УДК 552.3 (575.3)

ПЕТРОГРАФИЯ

и. в. мушкин

ЩЕЛОЧНО-БАЗАЛЬТОИДНАЯ ФОРМАЦИЯ АКТИВИЗИРОВАННЫХ ОРОГЕННЫХ ОБЛАСТЕЙ НА ПРИМЕРЕ ТЯНЬ-ШАНЯ

(Представлено академиком Ю. А. Кузнецовым 13 IV 1972)

В последние 10 лет на территории Тянь-Шаня, преимущественно в его южной части (Южный Тянь-Шань), установлено широкое развитие трубок взрыва и даек, сложенных различными модификациями щелочных базальтоидов из ряда трахибазальт — камптонит (мончикит, тералит) — лимбургит — щелочной пикрит (гиссарит). Наиболее детально они охарактеризованы в Южно-Гиссарской структурно-формационной зо-

не (1-3). Меньшей информацией мы располагаем по трубкам взрыва и дайкам щелочных базальтоидов Зеравшано-Гиссарской зоны (Нуратау, северный склон Гиссарского хребта) (4) и других регионов Тянь-Шаня.

По геологическим данным, возраст характеризуемых образований устанавливается как послераннетриасовый — домеловой. Цифры абсолютного возраста, 170—220 млн лет (К — Аг-метод), позволяют считать их триасовыми или даже триасово-юрскими (1).

Выделяются две ветви дифференциации щелочных базальтоидов: долерит-кринанитовая (в целом более ранняя) и камптонит-тералит-

щелочно-пикритовая.

Первая из них представлена исключительно дайками диабазовдолеритов, часто уклоняющимися по составу в сторону кринанитов и тешенитов. Породы образованы плагиоклазом (An = 50 - 80%), авгитом (часто титанистым), оливином (Fa = 45%), титаномагнетитом; реже присутствуют керсутит броначит

Рис. 1. Вариационная петрохимическая диаграмма щелочно-базальтоидной формации Тянь-Шаня. 1— базальтоидные породы о. Таити $(^5)$, 2— базальты о. Мадейра $(^5)$, 3— трахибазальты Прибайкалья $(^8)$, 4— щелочные базальтоиды Южного Гиссара, 5— то же Нуратау

же присутствуют керсутит, бронзит, маложелезистый биотит (титани-

стый мероксен), анальцим, калишпат, хром-шпинель.

Более щелочными являются породы камптонит-тералит-щелочно-пикритовой ветви дифференциации, слагающие наряду с дайками типичные трубки взрыва. Характерные их минеральные парагенезисы: клинопироксены (глиноземистый диопсид, реже хром-диопсид и фассаит) + оливин (Fa = 8-12%) + титанистый мероксен + анальцин + хром-пикотит + + плагиоклаз (калиевый андезин - лабрадор) \pm богатый калием амфибол *

^{*} По данным химического анализа, содержит 1,94—2,42 % K₂O.

(переходный между керсутитом и базальтической роговой обманкой) ± ± монтичеллит ± нефелин ± псевдолейцит. В отличие от долеритов и тешенитов, в этих образованиях обильны включения гранулитов и глубинных гипербазитов (шпинелевые, оливиновые, реже гранатовые пироксениты, вебстериты и перидотиты).

Химический состав наиболее характерных представителей раннемезозойских щелочных базальтоидов Тянь-Шаня иллюстрируется табл. 1.

Особенности условий формирования и вещественного состава описываемой ассоциации позволяют сопоставить ее с оливиновой щелочно-базальтовой формацией континентов (5, 6).

Из анализа диаграммы, построенной по методу А Н. Заварицкого (рис. 1), вытекает, что базальтоиды Тянь-Шаня — более щелочные образования, чем типовые оливиновые базальты континентов и океанов. Вместе с тем, они богаче калпем (средиземноморская серия по А. Ритмапу (7)) и магнием и беднее титаном. Тем не менее, наиболее близкие их петрохимические аналоги следует искать в оливиновой щелочно-базальтовой формации коптинситов, что подтверждается при помощи уравнений дискриминантных функций, выведенных В. А. Кутолиным (8).

Химический состав образцов (вес. %)

Таблипа 1

Компо- нент	Южный Гиссар				Северный Нуратау		
	анальцимовые трахибазаль- ты (n ==7)	камптони- ты (n = 28)	мончики- ты и лим- бургиты (n = 27)	щелочные пикриты $(n = 10)$	долериты и кринаниты (n = 18)	тералит- порфиры (n = 1)	щелочные пикриты (n = 5)
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MgO MnO CaO K ₂ O Na ₂ O P ₂ O ₅ Cr ₂ O ₃ Π.π.π.	49,23 1,01 17,53 4,39 4,66 2,48 0,11 6,83 3,83 2,79 0,44 He onp. 7,52	43,02 1,18 15,28 3,63 5,85 6,54 0,16 10,56 3,61 2,13 0,56 0,024 7,52	45,09 1,24 14,19 6,74 5,26 7,80 0,16 9,22 2,72 2,01 0,40 0,05 5,99	38,50 1,38 13,77 3,99 6,62 9,80 0,22 12,21 1,76 1,35 0,53 0,03 8,91	45,49 1,77 14,31 3,73 6,41 8,17 0,13 8,25 1,60 2,99 0,36 0,03 6,63	43,28 1,25 14,33 4,36 4,10 8,47 1,83 12,85 2,73 2,45 0,32 0,03 4,08	36,58 1,15 8,72 4,13 6,04 13,56 0,19 13,27 1,86 1,88 0,68 0,12 11,00
Σ CO ₂ f _{06щ,} мол. %	100,42 3,99 68,4	100,064 3,98 44,0	100,82 3,34 44,6	99,09 2,09 36,8	99,56 2,00 40,0	100,08 2,34 34,8	99,18 9,26 31,0

 Π р и м е ч а н и е. Анализы выполнены в лабораториях Управления геологии Совета Министров ТаджССР и треста «Самаркандгеология». n — число анализов,

Следует подчеркнуть, что большинство детально описанных в мировой литературе представителей указанной формации приурочено главным образом к активизированным платформам и их непосредственному обрамлению. Щелочные базальтоиды Тянь-Шаня и некоторых сопредельных территорий, например Южной Джунгарии (°) и Юго-Западного Памира, связаны с активизацией орогенных областей. При этом в максимально активизированных структурах с мощной (50 км и более) земной корой они носят отчетливо калиевый характер и образуют тиничные трубки взрыва (Южный Гисссар).

По ряду геологических, петрологических и петрохимических признаков охарактеризованная ассоциация отличается от оливиновых щелочных базальтов континентов и сближается с рядом формаций централь-

вых интрузий и трубок взрыва по Ю. А. Кузнецову (5).

Исходя из всего сказанного, целесообразным представляется выделение щелочно-базальтоидной формации активизированных орогенных областей.

Зарафшанская экспедиция треста «Самаркандгеология» Поступило 30 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. В. Мушкини др., ДАН, 458, № 3 (1964). ² И. В. Мушкин и др., Тр. Всесоюзн. н.-и. геол. инст., нов. сер., 468 (1970). ³ Р. Б. Баратови др., Вулканические трубки взрыва и некоторые особенности глубинного строения Южного Гиссара, Душанбе, 1970. ⁴ И. В. Мушкин и др., Узб. геол. журн., № 1 (1971). ⁵ Ю. А. Кузнецов, Главные типы магматических формаций, 1964. ⁶ И. В. Белов, Трахибазальтовая формация Прибайкалья, М., 1963. ⁷ А. Ритман, Вулканы и их деятельность, М., 1964. ⁸ В. А. Кутолин, Статистическое изучение химизма базальтов, «Наука», 1969. ⁹ Г. Л. Добрецов, Т. Г. Добрецова, В сборн. Ксенолиты и гомеогенные включения, «Наука», 1969.