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ЖИДКОСТИ НАД ВОЛНИСТЫМ дном

(Представлено академиком А. Ю. Ишлинским 17 VIII 1972)

Дается точное решение задачи, если давление на поверхности посто­
янно, а плоская линия дна является волнообразной периодической кривой, 
заданной некоторым бесконечным тригонометрическим рядом. Исследует­
ся и особый случай, когда длина дуги волны линии дна совпадает с дли­
ной установившейся свободной линейной волны, отвечающей взятой ско­
рости потока при горизонтальном плоском дне. Здесь кратко излагаются 
полученные нами результаты; основные из них были доложены нами на 
XIII Международном конгрессе по теоретической и прикладной механике 
в Москве (21—26 августа 1972 г.) (‘).

В нашей работе (2) впервые была рассмотрена аналогичная задача ме­
тодом Т. Леви-Чивита, сводящим ее к решению нелинейных дифферен­
циальных уравнений; однако указанный выше особый случай рассмотрен 
не был. Здесь задача сводится к решению системы нелинейных интеграль­
ных и трансцендентных уравнений.

Рассмотрим плоскопараллельное установившееся движение идеальной 
несжимаемой тяжелой жидкости, ограниченной сверху свободной поверх­
ностью, на которой давление р предполагается постоянным и равным р0; 
снизу жидкость ограничена волнистым дном, которое пересекается вер­
тикальной плоскостью течения по периодической волнообразной линии 
L — линии дна. Пусть поток обладает постоянной заданной средней гори­
зонтальной скоростью с при у = 0 (см. ниже) и направленной слева напра­
во. Благодаря периодичности линии дна свободная поверхность принимает 
форму неподвижной периодической волны в координатах, связанных с про­
грессивной волной, имеющий скорость — с.

Пусть гребень искомой волны и гребень линии L будут расположены на 
одной и той же вертикали и пусть волна и линия дна обладают симмет­
рией относительно этой вертикали и вертикали линии дна у середины ее 
впадины. Совместим ось Оу прямоугольной системы координат хОу с осью 
симметрии у гребня и направим ее вертикально вверх; за начало коор­
динат примем точку пересечения оси Оу с линией дна, а ось Ох направим 
вправо по горизонтальной касательной к линии дна. Пусть период по х 
(или длина волны) линии дпа равен X. Примем угол с осью Ох, образо­
ванный касательной к линии L, заданным в виде функции 6(s) длины ее 
дуги s; обозначив через 21 длину дуги линии L за период по х, предпола­
гаем, что

сс
©(<)= 3 sin(1) 

п=1

где е — малый безразмерный положительный параметр, — заданные 
действительные числа, причем ряд У сходится в круге радиуса е0 > 0. 
Из параметрических уравнений линии L вытекает, что

оо 2
X = Хо + У кпгп- Zo = 2Z, = 0, х2 = - 4^, = 0; (2)

П=1
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Л„, и =4, 5,...,— полиномы по (3,. Предполагается, что длина волны на 
поверхности жидкости также равна X.

Плоскость течения хОу примем за плоскость комплексного переменно­
го z = х + iy. Введем обычные обозначения: ср — потенциал скоростей; 
ф — функция тока; w = ср + гф — комплексный потенциал скоростей.

Для вывода уравнений задачи сначала отобразим конформно область, 
занятую одной волной на прямоугольник 0 ср ср0, 0 < ф ф0 в плос­
кости w (здесь ф = фо— расход потока в единицу времени; ср0 = кс), а 
-затем этот прямоугольник — на внутренность кругового кольца с центром 
в нуле плоскости u = ul + iu2. При этом отрезок О -S ср ср0, отвечающий 
свободной поверхности, перейдет в окружность внешнего круга единично­
го радиуса, а отрезок, соответствующий дну, перейдет в окружность внут­
реннего круга радиуса г0 = ехр (—2лф0/ф0) меньшего единицы. Кольцо 
имеет разрез (г0, 1).

Выражение z через и определяется из соотношения
dz   к exp [ico (и)] .
du 2л1 и ’ '

здесь
со (и) = Ф + it. (4)

Из (3) и (4) находим при и = (В — угол радиуса-вектора с осью и,) 
дифференциальное соотношение; отделяя в нем действительные и мнимые 
части и интегрируя, получаем параметрическое уравнение профиля волны 

е 9
х=----- \ cos (i|) dp, у =------------sin Ф (ц) dx\. (5)Л и Л Vо о

Из предыдущего следует, что всюду в потоке функция Ф равна углу 
вектора скорости q с осью Ох и что

q= | q | = с ехр(т). (6)
В силу симметрии искомой волны функция т(0) = т(1, 0) четная, а 

Ф(0) =Ф(1, 0) — нечетная. Поэтому имеем разложения
00 со

— т (б) = л, + 2 Ап c°s п®, ф (в) = 2 s^n
п=1 н=1

Для функций т*(0) = т‘(го, 0) и Ф*(0) =Ф‘(го, 0) справедливы анало­
гичные разложения, но с другими Ап* и Вп*, п = 1, 2,...

Из интеграла Бернулли для поверхности, учтя по закону Лапласа си­
лы поверхностного натяжения, после выделения линейных относительно 
Ф и т слагаемых и определения у по второй формуле (5), получаем

9
•^-= — 1 — (6 + 1)т + х$ ф(т])йц + F [т. Ф, 6] (7)

F [г, Ф, 6] = 6 (х' — 1 + т) — (ет — 1 — т) ф-
9 9 9

+ хе_т sin Ф (р) — Ф (ц)[ dx] ф- хе_т Ф (ц) dx] — х Ф (q) dx],
о оо

где
00

6 = 2 (Ср — Ро)/рс2, v = Хс2р/4лц = v(0) ф- 2 v<n>cn, v(,)) = с2рХ0/4лр, 
п=1

х = gX/лс2 = х0 + 2
71=1

v(”> = (v<o’Ao)X„, 

Хо = g^o/^c2,

хи (хо/А<о)Хп,
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С — константа в интеграле Бернулли, g — ускорение силы тяжести, р — 
капиллярная постоянная.

Преобразуем в (7) слагаемые, линейные относительно функций и е,. 
применяя интегральные формулы, выражающие т и т* через с7Ф/с?0 и 
dФ*/df), обобщающие формулы Дини для круга (3), и интегрирование по- 
частям. Затем в фигурной скобке — множители при v<0) — объединяем сла­
гаемые с одинаковой подынтегральной функцией с1Ф/(1г\ и с разными яд­
рами:

п=1 vn п—1
где vn' = nth (2лп1|-0/ф0).

В уравнении (7) константы v(0) и х0, зависящие от с и I, считаются 
заданными, а б определяется из условия периодичности Ф (0 + 2л) = 
= Ф(6).

Из этого условия при е 0 имеем

6 = 1 + б'(е). (8>
После всех преобразований и с учетом (8) уравнение (7) примет окон­

чательный вид
2г. 2“

:(0) = V<O)H 0) (11) cZr, + 8' (8) -2 (2 + б' (е)) \ N (р, 0) Г (р) dr\ +
1 о о

2- 2т:

+ (2 + б' (е)) Ад + 6' (е) $ К (р, 0) £ (р) dp + х0 К2 (р, 0) £ (р) dp+T (0, е)|+- 
о о J

оо 2т: ' 2т:

+ 2 (2 \ К (р, 0) £ (р) dp - х0 J К2 (р, 0) £ 01) <*Р + • • •} (9)
п=1 1 0 о J

(многоточие во второй фигурной скобке заменяет члены из первой, начи­
ная со второго); здесь £(0) = dФ/d0, £*(0) = dФt/dQ,

оо
,т , 1 Vi cos пр cos п0 4 1 1 ' " ,^(11,9) = — 2------------- Т------------- , - = —-^2. vnvn = M2,

JI v V Vn=l n n n
oo 9

(0, e) = 2 xn8n \ ф (n) dp + F [т, Ф, 1 + 6' (e)J, (10)
n=l b

^(n,e)= 2

n=l

Ф„ 01) Ф„ (9) n2
2v" — zo

Tn (g) =
COS П0

J

v„ — собственные значения, cp„(0) —собственные функции ядра ЛГ*(р, 0). 
Если считать, что в выражении Чт функция т(0) взята из (3) и в/•»

Ф(0) = \ £(p)dp, то (9) будет нелинейным интегральным уравнением

Для £(0).
Условие периодичности функции Ф(0) дает соотношение

2* 2^

б' (8) = - х0 J К2 (р, 0) £ (р) dp - (2 + б' (8)) Ад - -L- J У (0, 8) d0 -
о * о

ос

~ ,2v(n)i” {[6'(е) + (2 +б'(е)) л +
2я 2т:

+ хэ 5 7£2 (р, 0) £ (p)'dp'] 2л + Y(9, e)de|. (11)
0 J о
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На дне должно выполняться условие обтекания, которое в силу (1) и 
после дифференцирования примет вид

СО
Г(0)= (12).

п=1
Отсюда видно, что необходимо найти функцию s(0) на дне. Из (3) и 

(4) при г = г0 и, так как ds = | dz |, получаем
в

«(0) =—^Г^ехр i—dTi; (13)
О

здесь приписан знак минус, чтобы отрицательным приращениям 0 отве­
чали положительные приращения s.

Коэффициент Л о в (9) выбирается так, чтобы длина дуги линии дна, 
отвечающая периоду, равнялась заданной величине 21. Согласно (13), это 
дает

2л
21 ехр (— Ио) = J ехр [— т* (— р) — Ло] dp. (14)

О
Таким образом, задача свелась к определению трех функций £(0, е), 

5*(0, е), s(0, е) и двух констант 6'(е) и Л0(е) из системы пяти нели­
нейных уравнений (9), (11), (12), (13) и (14) с учетом интегральных 

о
формул (3) для т(0) и т‘(0) и при Ф(0, е) = £(т], е)dp, Ф‘(0, е) =

б
о

= § £*(р, e)dp. При решении основным является нелинейное интеграль- 
и

ное уравнение (9). Приходится рассматривать два случая: в первом слу­
чае v<0) ¥= v„ во втором v(0) = v„. Как ив (5), отметим, что v(0) = v„ 
(10) является тем особым случаем, который указан в начале статьи.

В первом случае решение £(0, е), £*(0, е), s(0, е), б'(е) и Л0(е) стро­
ится в виде рядов по целым степеням параметра е. Во втором случае в 
качестве примера рассмотрено значение v<0) = vt, где собственное значе­
ние v, простое и положительное (5). Здесь решение получается в виде 
рядов по степеням е'/1. В обоих случаях, применяя методы Ляпунова — 
Шмидта (4), доказываем, что эти ряды абсолютно и равномерно сходятся 
при 0 =£) 0 2л и малых значениях |е| < е4 и дают единственное- 
малое относительно к и непрерывное по 0 решение задачи.

До конца рассчитаны первые три приближения решения задачи. По­
лучено приближенное уравнение профиля волны. Анализ главного члена, 
этого уравнения показал, что в зависимости от знака 31 над гребнем ли­
нии дна может находиться как гребень, так и впадина волны на поверх­
ности жидкости.
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