УДК 517.11

MATEMATUKA

Ю. Д. СТРИГИН

ИЕРАРХИЯ ОБЩЕРЕКУРСИВНЫХ ФУНКЦИОНАЛОВ

(Представлено академиком П. С. Новиковым 20 VII 1972)

1. Статья посвящена исследованию и классификации сложности общерекурсивных функционалов. В данном случае оценивается сложность обращения к функции α — аргументу функционала. Рассматриваются специальные трансфинитные последовательности сигнализирующих функционалов как обобщение сигнализирующих функционалов, введенных Трахтенбротом (¹). Эти последовательности связываются с системой О Клини обозначений конструктивных ординалов (²).

Все общерскурсивные функционалы располагаются в иерархию по «длипе» соответствующей последовательности. По своим основным свойствам построенная иерархия запимает промежуточное положение между гиперарифметической иерархией (³, ¹) и иерархией общерекурсивных функций (5-7): с одной стороны, перархия невырождена, с другой, уже па уровне ω^2 нарушается свойство однозначности.

2. Частично-рекурсивный (ч.р.) функционал $F(\alpha)$ назовем общерекурсивным (о.р.), если оп определен на всех одноместных всюду определенных теоретико-числовых функциях α .

По теореме о нормальной форме $(^{8})$, любой ч.р. функционал можно представить в виде

$$F(\alpha) = \psi(\bar{\alpha}(\mu x R(\bar{\alpha}(x)))),$$

где ψ и R — о.р. функция и о.р. предикат соответственно.

В соответствии с таким представлением поставим в соответствие ч.р. функционалу F его гёделевский номер i=c(n,m)*, где n— гёделевский номер функции ψ (будем писать ψ_n), m— гёделевский помер предиката R (будем писать R_m). Функционал F с гёделевским номером i будем обозначать F_i .

3. Определение 1 (ср. $(^{i})$). Пусть i, j — гёделевские помера о.р. функционалов. Число j назовем просто сигпализирующим для числа i, если для всех α выполняется неравенство

$$\mu x R_{r(i)}(\bar{\alpha}(x)) \leq F_{j}(\alpha).$$

Обобщением этого определения является следующее определение, опирающееся на систему O Клини обозначений конструктивных ординалов (2).

Определение 2. Ч.р. функция $\varphi(x)$ называется y-характеристикой для числа i ($y \in O$, i— гёделевский номер о.р. функционала), если φ определена на всех $w \leq_{\circ} y$, даст па них гёделевские номера о.р. функционалов так, что

1) $\varphi(0_o) = i$;

2) если y = z + 0.0, то φ есть z-характеристика для i и $\varphi(z + 0.0)$ — просто сигнализирующее для $\varphi(z)$;

3) если $y=3\cdot 5^e$, то для всех натуральных t ϕ есть $\{e\}$ (t_o) -характеристика для i и для каждой α $F_{\phi(y)}(\alpha)=c(v,n)$, где $v<_{\circ}y$, и $\mu x R_{r(\phi(v))}(\bar{\alpha}(x))\leqslant n$.

^{*} $c\left(n,\ m\right),\ l\left(k\right),\ r\left(k\right)$ — функции кодирования пар и обратного декодирования (см. (9)).

В этом случае число $\phi(y)$ будем называть y - с и г и а л и з и р у ю щ и м для числа i.

 ϕ называется полной y-характеристикой для i, если она является y-характеристикой для i и $F_{\phi(y)}(\alpha) \equiv \mathrm{const.}$

Построим классы C_y о.р. функционалов $(y \in O)$: $F \in C_y \Leftrightarrow$ существует полная $y +_o 1_o$ -характеристика для некоторого i такого, что $F = F_i$.

Далее определим классы C_{ν} о.р. функционалов (ν -конструктивный ординал):

$$C_{\mathbf{v}} = \bigcup_{|y|=\mathbf{v}} C_{y}, \quad y \in O$$
.

4. Теорема 1 (о полноте иерархии). Существует примитивно-рекурсивная функция h(i) такая, что если i – гёделевский номер о.р. функционала, то h(i) = c(y, n), где $y \in O$, n — гёделевский номер полной y-характеристики для i.

Указапное в теореме 1 у строится с помощью конструкции Клини (²) как обозначение брауэровского ординала, соответствующего запирающему

предикату $R_{r(i)}$ (10).

Таким образом, брауэровский ординал запирающего предиката $R_{r(i)}$ может служить верхней оценкой сложности о.р. функционала F_i в данной иерархии.

Следующая теорема устанавливает обратную зависимость.

Будем через $|S^n|$ обозначать брауэровский ординал запирающего прециката R.

T е о p е м а $\ 2$. Eсли существует полная $\ y+_o 1_o$ -характеристика $\ \partial$ ля $\ i$,

 $To |S^{R_{r(t)}}| \leq (\omega^{\omega})^{|y|+1}.$

Теорема 3 (о певырожденности перархии). Существует примитивно-рекурсивная функция g(y) такая, что если $y \in O$, то g(y) — гёделевский номер о.р. функционала такого, что $F_{g(y)} \in C_y$, но для любого v < |y| $F_{g(y)} \notin C_v$.

5. Пусть у — конструктивный ординал. Скажем, что для у выполняется свойство однозначности, если для любых двух $y_1, y_2 \in O$ таких, что $|y_1| = |y_2| = v$, справедливо равенство $C_{y_1} = C_{y_2}$.

Нетрудно показать, что свойство однозначности выполняется для всех

 $v < \omega^2$ (cp. (6)).

Теорема 4 (о неоднозначности). Можно указать три числа y_1 , y_2 , i ($y_1, y_2 \in O$, $i - c \ddot{e} \partial e n e b c k u \ddot{u}$ номер о.р. функционала) такие, что $|y_1| = |y_2| = \omega^2$, $F_i \in C_{y_i}$, но $F_i \notin C_{y_2}$.

Замечание. Указанное y_2 принадлежит стандартному нути до ω^{ω} в O. Пусть y_3 — обозначение ω^3 на этом пути. О.р. функционал F_i , который имеется в виду в теореме 4, принадлежит C_{y_3} , по для всех $y \leq_O y_3$ $F_i \notin C_y$.

Доказательство теоремы 4 опирается на лемму о «быстром» пути.

О п р е д е л е н и е 3. Пусть y_1 и y_2 — обозначения предельного ординала $v, y_1, y_2 \in O$ (y_1 и y_2 можно считать также обозначениями соответствующих путей до v в O). Скажем, что y_1 быс трее y_2 ($y_1 > y_2$), если для любых рекурсивных монотонно возрастающих в смысле $<_o$ последовательностей $f_1(t_o)$ и $f_2(t_o)$, пробегающих через соответствующие y_1 и y_2 пути в O так, что $|f_1(t_o)| \rightarrow v$ и $|f_2(t_o)| \rightarrow v$, найдется число N такое, что для всех n > N $|f_1(n_o)| > |f_2(n_o)|$.

Лемма (о быстром пути). Существует примитивно-рекурсивная функция h(y) такая, что если $y \in O$ и $|y| = \omega^2$, то $h(y) \in O$, $|h(y)| = \omega^2$

u h(y) > y.

6. Соединением двух функций а и β будем называть функцию

$$\langle \alpha, \beta \rangle (x) = \begin{cases} \alpha(k), & x = 2k, \\ \beta(k), & x = 2k + 1. \end{cases}$$

Определение 4. О.р. функционал $U(\alpha)$ будем называть универсальным для класса K одноместных о.р. функционалов, если для каждого функционала $F \in K$ найдется о.р. функция f такая, что $F(\alpha) \equiv U(\langle f,\alpha\rangle)$, и, наоборот, для любой фиксированной о.р. функции f о.р. функционал $\lambda \alpha U(\langle f,\alpha\rangle) \in K$.

Введем обозначение:

$$K_y = \bigcup_{z < o} C_z$$
.

Теорема 5. Существует примитивно-рекурсивная функция g(y) такая, что если $y \in O$, то g(y) — гёделевский номер о.р. функционала $F_{g(y)}$, универсального для класса K_y , при этом $F_{g(y)} \in C_{z+o}$ (2n), где z и n соответствуют разложению: $y = z +_O n_O$ (z — обозначение предельного ординала).

Замечание. Рассматриваемая перархия о.р. функционалов была построена непредикативно. Построение универсальных функционалов $F_{g(y)}$ для классов K_y , о котором говорится в теореме 5, осуществляется на самом деле таким образом (индуктивно по системе O), что можно говорить о предикативном построении перархии.

Автор выражает глубокую благодарность А. А. Мучнику за постановку

задачи, постоянное внимание и помощь в работе.

Московский государственный университет им. М. В. Ломоносова

Поступило 13 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. А. Трахтенброт, Уч. зап. Пензенск. гос. пед. инст., 4, 75 (1956). ² S. C. Kleene, Am. J. Math., 77, № 3, 405 (1955). ³ S. C. Kleene, Bull. Am. Math. Soc. 61, № 3, 193 (1955). ⁴ С. Spector, J. Symb. Log., 20, № 2, 151 (1955). ⁵ S. C. Kleene, Coll. Math., 6, № 1, 67 (1958). ⁶ P. Axt, Trans. Am. Math. Soc., 92, 85 (1959). ⁷ С. Феферман, Сборн. пер. Математика, 15, 6 (1971). ⁸ С. К. Клини, Введение в метаматематику, М., 1954, стр. 259. ⁹ А. И. Мальцев, Алгоритмы и рекурсивные функции, М., 1965. ¹⁰ L. E. J. Brouwer, Proc. Sect. Sci, 27 (1924).