УДК 546.791 ХИМИЯ

А. Н. ЦВИГУНОВ, Л. М. КОВБА, Е. В. ЗУБОВА, В. В. САВРАНСКИЙ, Г. Л. ОПАРНИКОВ

О ВЛИЯНИИ НЕГИДРОСТАТИЧЕСКИХ НАПРЯЖЕНИЙ НА ФАЗОВЫЕ ПРЕВРАЩЕНИЯ ЗАКИСИ — ОКИСИ УРАНА ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ

(Представлено академиком Л. Φ . Верещагиным 30 VI 1972)

Нередко негидростатические напряжения существенным образом влияют на фазовые и химические превращения в твердых телах. Нами было высказано предположение (¹), что полиморфное превращение α -U₃O₈ \rightarrow β -U₃O₈ также вызвано негидростатическими напряжениями, возникающими тем или иным образом в α -U₃O₈.

При қомнатной температуре и давлении свыше 20 кбар нами были получены образцы закиси — окиси урана, на рентгенограммах которых помимо линий исходной фазы α - U_3O_8 (основная) присутствовали линии β - U_2O_8 (примесь), α - U_2O_{5+x} (примесь) и кубической фазы U_3O_8 (следы). Поэтому можно было предполагать, что при высоких давлениях и комнатной температуре возможны более сложные фазовые превращения, чем рассмотренные в (1).

В настоящей работе приведены результаты исследования фазовых превращений закиси — окиси урана (α -U₃O₈) при комнатной температуре и сложных негидростатических напряжениях: одновременное сжатие и сдвиг. Сдвиговая и сжимающая компоненты создавались в процессе измельчения α -U₃O₈ в шаровой мельнице (2). Исходная закись — окись урана (α -U₃O₈) получалась прокаливанием до постоянного веса при 650° С гидрата перекиси урана. Рентгенограммы измельченных образцов закиси — окиси урана снимались в фокусирующей камере — монохроматоре и дифрактометре УРС-50и (излучение CuK_{α}). В течение первых 20 час. измельчения рентгенографическое исследование проводилось

через каждый час, а затем с интервалом 4—10 час.

После 2 час. измельчения α-Ū₃O₈ на дифрактограмме стали заметны линии β - U_3O_8 . Однако полного превращения α - $U_3O_8 \rightarrow \beta$ - U_3O_8 не наблюдалось. Нам представляется, что данные Герак (3) о почти полном превращении α - $U_3\bar{O}_8 \rightarrow \beta$ - U_3O_8 ошибочны. Вероятно, в (3) не совсем верно были проиндипированы линии двухфазного образца закиси - окиси урана: α - U_3O_8 и β - U_3O_8 . Так, одной из наиболее характерных и ярких линий α-U₃O₈ (1.3.0) приписан маловероятный индекс сверхструктурной линии β - U_3O_8 (1.1.2). Поэтому совпадающим линиям α - U_3O_8 и β - U_3O_8 были приписаны лишь индексы β-U₃O₈. На дебаеграммах образцов закиси — окиси урана, подвергнутых измельчению в течение двух часов, наряду с линиями β - U_3O_8 была заметна очень размытая и слабая линия (1.1.1) кубической фазы. С увеличением времени измельчения количество кубической фазы возрастало. Через неделю α-U₃O₈ почти полностью перешла в кубическую фазу состава UO_{2.67}. Вместе с этим в процессе измельчения наблюдалось образование в виде примеси α - U_2O_{5+x} . Измельчение закиси — окиси урана сопровождается адсорбцией заметного количества воды. На кривой нагревания кубической $UO_{2,67}$ присутствовало эффекта: эндотермический (100—150°), объясняющийся удалением сорбированной воды, экзотермический (330°) и эндотермический при 660°.

Второй эффект соответствует окислению $UO_{2,67}$ (кубическая фаза) до гексагональной фазы α - $UO_{2,85}$, а третий — распаду этой фазы до U_3O_8 . Хорошо закристаллизованные образцы кубической фазы получались при повторном измельчении α - U_3O_8 , полученной после отжига в течение суток при 750° смеси фаз α - U_3O_8 и $UO_{2,67}$ (куб), образовавшейся в результате измельчения закиси — окиси урапа в течение 72 час. Индицирование рентгенограммы $UO_{2,67}$ (куб.) показало, что она имеет гранецентрированную решетку с a=5,418 Å. На элементарную ячейку приходится четыре формульные единицы $UO_{2,67}$, $\rho_{\rm pentr}=11,72$ г/см³.

Состояния со сложными негидростатическими и постоянно меняющимися напряжениями часто реализуются в земной коре (4). В какой-то степени они апалогичны возникающим в процессе измельчения закиси — окиси урана в шаровой мельнице. Вероятно, это одна из причип того, что у природных окислов урана в широкой области составов сохраняется

кубическая решетка.

Таким образом, у α - U_3O_8 при комнатной температуре и негидростатических напряжениях возможны два фазовых превращения. Одно из них α - $U_3O_8 \rightarrow \beta$ - U_3O_8 протекает в основном под воздействием сдвиговых напряжений (¹). В результате чего образуется менее плотная полиморфиал модификация закиси — окиси урана (β - U_3O_8). Сжатие и сдвиг способствуют второму фазовому превращению, при этом образуется более плотная и устойчивая при высоком давлении и температуре кубическая фаза $UO_{2.67}$.

Необычные условия образования β - U_3O_8 явились, по-видимому, одной из причип открытия новых полиморфных модификаций закиси — окиси урана δ - U_3O_8 (5), p- U_3O_8 (6), H- U_3O_8 (7).

Московский государственный университет им. М. В. Ломоносова

Поступило 28 VI 1972

цитированная литература

⁴ А. Н. Цвигунов, Л. М. Ковба, Радиохимия, 14, 769 (1972). ² Л. Б. Левенсон. Машины для обогащения полезных исконаемых, 1935. ³ R. Негак, J. Inorg. and Nucl. Chem., 32, 3793 (1970). ⁴ В. В. Белоусов, Структурная геология, М., 1971. ⁵ М. D. Karkpanavala, А. М. George, J. Nucl. Mater., 19, 267 (1966). ⁶ S. Steeb, D. Brucklacher, J. Less-Common Metals, 11, 263 (1966). ⁷ T. Sato, Bull. Tokyo Inst. Techn., 56, 21 (1963).