УДК 517.11

MATEMATUKA

в. с. шевяков

О ФОРМУЛАХ УЗКОГО ИСЧИСЛЕНИЯ ПРЕДИКАТОВ, ОТЛИЧАЮЩИХ НЕКОТОРЫЕ КЛАССЫ МОДЕЛЕЙ С ПРОСТО ВЫЧИСЛИМЫМИ ПРЕДИКАТАМИ

(Представлено академиком П. С. Новиковым 20 VII 1972)

Моделью называется множество с заданными на нем предикатами (см. (¹)). Пусть (α) — некоторый класс моделей. Множество всех замкпутых формул узкого исчисления предикатов с равенством (у.и.п.), истинных на классе (а), называется элементарной теорией класса и обозначается Тh_a. Истинность формулы у.и.п. на классе означает ее истинность на всех моделях класса той же сигнатуры, что и формула. Слово «элементарная» в дальнейшем опускается. Теориям отдельных классов, состоящих из одной, чем-либо интересной модели, посвящено много работ, обзор которых сделан, например, в (2, 3). Теорией класса всех вообще моделей является множество всех доказуемых формул — в этом и заключается теорема Гёделя о полноте у.п.п. Представляет интерес изучение классов, которые определяются некоторыми ограничениями на сложность вычисления предикатов.

Знак \subset означает, в отличие от \subseteq , строгое вложение. Если (α), (β) классы моделей и $(\beta) \subseteq (\alpha)$, ясно, что $\hat{Th}_{\alpha} \subseteq \hat{Th}_{\beta}$. Если формула Φ выполнима в классе (α), но не выполнима в классе (β), то $\neg \Phi \in \mathrm{Th}_{\beta} \setminus \mathrm{Th}_{\alpha}$ н Тh_α = Th_β. В настоящей заметке указываются формулы, имеющие модель в большем, но пе в меньшем классе для некоторых классов с предикатами из класса Гжегорчика \mathscr{E}^2 (4).

Дадим определение рассматриваемых классов моделей.

1) (\mathscr{E}^2) — класс всех моделей, у которых основное множество N=

 $\{0,1,2,\ldots\}$, а предикаты принадлежат классу \mathscr{E}^2 . 2) Класс автоматных моделей (\mathfrak{A}). Пусть Σ — конечный алфавит, $\sigma \notin \Sigma^*$. Для всякого набора слов x_1, \ldots, x_n из Σ^* числа i_1, \ldots, i_n таковы, что $x_1\sigma^{i_1},\ldots,x_n\sigma^{i_n}$ имеют одинаковую длину $(\sigma^i-\mathfrak{I}\sigma\sigma\ldots\sigma)$. i pas

n-Местный предикат P (над словами из Σ^*) называется а в том а т н ы м, если существует такой конечный автомат над $\Sigma \cup \{\sigma\}$ с n лентами, на которых он работает сипхронно, что $P(x_1, ..., x_n)$ истинно тогда и только тогда, когда набор $\langle x_1 \sigma^{i_1}, \ldots, x_n \sigma^{i_n} \rangle$ допускается этим автоматом (5).

- 3) Модель называется 1-мерной пресбургеровой, если ее основное множество N, а предикаты выразимы средствами у.и.п. через предикат обычного сложения x+y=z (см. (3), § 2; (6), § 5.6). Предикат $P(\bar{x}_1,\ldots,\bar{x}_k)$ называется n-мерным пресбургеровым, $\bar{x}_1,\ldots,\bar{x}_k \in \mathbb{N}^n$ и существует 1-мерный kn-местный пресбургеров предикат P', такой, что $P'(x_{i_1},\ldots,x_{i_n},\ldots,x_{k_i},\ldots,x_{k_n}) \equiv P(\bar{x}_1,\ldots,\bar{x}_k)$ $(x_{ij}-j$ -я координата вектора \bar{x}_i). Мы будем рассматривать класс всех пресбургеровых моделей (Pr) и классы n-мерных моделей (Pr, n), $n = 0, 1, 2, \dots$
- 4) Если в определении пресбургеровых моделей заменить предикат x + y = z на $x \le y$ (обычный порядок), получим классы (\le) и (\le , n).

Из приводимых ниже теорем 1—3 и замечания к теореме 2 следует

$$Th_{g2} \subset Th_{\mathfrak{A}} \subset Th_{\mathfrak{P}_{\Gamma}} \subset Th_{\mathfrak{S}_{r}}, \quad Th_{\mathfrak{P}_{\Gamma}, n} \subset Th_{\mathfrak{P}_{\Gamma}, n-1},$$

$$Th_{\mathfrak{S}_{r}, n} \subset Th_{\mathfrak{S}_{r}, n-1}, \quad Th_{\mathfrak{P}_{\Gamma}, n} \subset Th_{\mathfrak{S}_{r}, n}, \quad n \geqslant 1.$$

Теорема 1. Формула

$$\forall x \forall y \exists z Q(x, y, z). \ \forall x \forall y \forall z \forall t \forall u \ (Q(x, y, z) Q(t, u, z) \supseteq : x = t. \quad y = u)$$

не выполнима в автоматной модели.

Эта формула описывает нумерацию (возможно, пеодпозначную) пар с однозначным восстановлением пары по померу; такие предикаты есть в \mathscr{E}^2 (4).

Пусть $\bar{c}, \bar{p}_1, \ldots, \bar{p}_r \in \mathbf{N}^n$. Мпожество $L \subseteq \mathbf{N}^n$ называется линейным с предпериодом \bar{c} и системой периодов $\bar{p}_1, \ldots, \bar{p}_r$, если $L = \{\bar{x} \mid \bar{x} = \bar{c} + \alpha_1 \bar{p}_1 + \ldots + \alpha_r \bar{p}_r, \alpha_1, \ldots, \alpha_r \in \mathbf{N}\}.$

Подмножество множества \mathbf{N}^n пазывается полулинейным, если оно является объединением конечного числа линейных множеств. Все полулинейные множества и только они являются графиками пресбургеровых предикатов (см. (6), § 5.6). Рангом линейного мпожества назовем ранг его системы перподов (в смысле обычной липейной зависимости). Конечная система линейных множеств $T = \{L_i\}$ называется покрытием $A \subseteq \mathbf{N}^n$, если $A \subseteq \bigcup_i L_i$. Назовем рангом T максимум рангов L_i . Раз-

мерностью A естественно считать минимум рангов покрытий A.

 Π е м м а 1. $\mathit{Иусть}\ Q$ — бинарный пресбургеров предикат и на n -мерном множестве A он задает полный порядок. Тогда порядковый типа A меньше ω^{n+1} .

Доказательство леммы осуществляется индукцией по n и использует свойство «периодичности» линейных множеств.

Сужение пресбургеровой модели на произвольное n-мерное мпожество назовем n-мерной обобщениой пресбургеровой моделью. С помощью сформулированной леммы доказывается

Теорема 2. Пусть Φ_0 — конъюнкция аксиом порядка Q. Формула

$$\Phi_0. \exists x \exists y (Q(x, y).x \neq y). \forall x \forall y (Q(x, y).x \neq y) : \exists z (Q(x, z)Q(z, y).x \neq z.y \neq z)),$$

означающая, что Q есть предикат плотного порядка, выполнима в автоматной, но не выполнима в обобщенных пресбургеровых моделях.

Замечание. Можпо доказать, что: 1) если бинарный предикат из класса (\leq , n) вполне упорядочивает $A \subseteq \mathbb{N}^n$, то порядковый тип A меньше $\omega^n \cdot 2$; 2) оценка леммы 1 точная, т. е. \mathbb{N}^n можно упорядочить с помощью пресбургерового предиката по любому типу $\xi < \omega^{n+1}$; 3) существуют замкнутые формулы у.п.п. $\Phi_{n,m}$, $n,m \in \mathbb{N}$, содержащие едипственную бинарную предикатную букву Q, п такие, что в любой модели, где $\Phi_{n,m}$ истинна, Q— предикат порядка, который пекоторое подмиожество упорядочивает по типу $\omega^n \cdot m$. Поэтому $\Phi_{n,1}$ выполнима в (\leq , n), но не выполнима в (r, r, r), а r, r выполнима в (r, r), по не в (r, r), r r

Векторы системы периодов липейного множества, записанные по столбцам, образуют матрицу периодов этого множества. Геометрическим описанием предикатов, выразимых через порядок, является

Пемма 2. График предиката из (\leq , 1) представим в виде конечного объединения множеств, матрица периодов любого из которых состоит из нулей и единиц и обладает тем свойством, что если строки $\bar{p}_{i_1}, \ldots, \bar{p}_{i_s}$ линейно зависимы и первые s-1 из них линейно независимы, то $\bar{p}_{i_s}=0$ или $\bar{p}_{i_s}=\bar{p}_{j_t}$ для i < s.

Используя эту лемму, доказываем следующее утверждение.

Теорема 3. Формула

$$egin{aligned} & orall x
abla y \exists z Q(x,y,z) .
abla x
abla y
abla z
abla t : Q(x,y,z) Q(t,y,z)
abla x = t), \end{aligned}$$

выполнимая в (Pr, 1) при $Q(x, y, z) \equiv x + y = z$, не выполняется в (\leq). Автор выражает глубокую благодарность А. А. Мучшику и А. Л. Семенову за ценную помощь.

Ипститут точной мехапики и вычислительной техники Академии наук СССР Москва

Поступило 13 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. И. Мальцев, Алгебранческие системы, М., 1970. ² А. И. Мальцев, Тр. Международн. конгресса математиков, Москва, 1966, М., 1968, стр. 217. ³ Ю. Л. Ершов, И. А. Лавров и др., УМН, 20, № 4, 37 (1965). ⁴ А. Гжегорчик, В сборн. Проблемы математической логики, М., 1971, стр. 9. ⁵ С. С. Е1доt, Л. Е. Меzеi, IBM J. Res. and Development, 9, 1, 47 (1965). ⁶ С. Гинзбург, Математическая теория контекстно-свободных языков, М., 1970. ⁷ Б. А. Трахтенброт, ДАИ, 88, № 6, стр. 953 (1953).