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АДДИТИВНЫЕ ФУНКЦИОНАЛЫ ОТ МАРКОВСКИХ ПРОЦЕССОВ 
И ИХ СПЕКТРАЛЬНЫЕ МЕРЫ

(Представлено академиком А. Н. Колмогоровым 11 VI 1973)

1. Пусть (ж(, Р) — марковский процесс с пространством элементарных 
событий Q, определенный на случайном интервале (а, (3) (см. (1,2)). Функ­
ция А (®, В) (<osQ, В — борелевское множество на прямой Т) называется 
аддитивным функционалом от (х(, Р), если: а) для всех 
св А (со, —) является о-конечной мерой на Т, сосредоточенной на (а, р); 
б) для любого открытого интервала 1 А Z) выражается почти навер­
ное (п.н.) через xt, t^I (т.е. измерима относительно о-алгебры, порожден­
ной этими функциями и множествами меры нуль). Условимся не различать 
функционалы, которые совпадают (п.н.).

Назовем функционал А непрерывным, если п.н. A {s} =0 при всех 
s, и нормальным, если при любом s A {s} п.н. выражается через 
xt, EAs. Все непрерывные функционалы нормальны. Если при любом 
s х„ п.н. выражается через xt, t=As, то все функционалы от (xt, Р) нор­
мальны. Так обстоит дело для право- и леворегулярных процессов * (а так­
же для процессов, непрерывных справа или слева).

* Марковский процесс (х(, Р) с переходной функцией р (s, х; t, Г) называется 
праворегулярным, если p(s, хе; t, Г) непрерывна справа по s (п.н. Р). Анало­
гично определяется (через копереходную функцию p(s, Г; t, у)) леворегуляр­
ный процесс.

Наша цель — описать все нормальные аддитивные функционалы от 
марковского процесса (х(, Р).

2. Будем предполагать, что пространство состояний Et в каждый мо­
мент i является борелевским пространством и что множество элементар­
ных событий й совпадает с множеством всех траекторий (последнее усло­
вие несущественно и вводится только для упрощения обозначений). Мера 
Р не обязана быть конечной. Достаточно потребовать, чтобы были о-конеч- 
ны одномерные распределения т((Г) =Р{а:1еГ}. Единственное существен­
ное ограничение на (х(, Р) (назовем его условием С) — это требование 
абсолютной непрерывности двумерных распределений процесса относитель­
но произведения одномерных: P{x,^dx, xt^dy}=ma(dx) -p(s, х; t, y)mt(dy). 
В (3) доказано, что функцию p(s, ж; t, у) можно всегда выбрать так, что­
бы для любых s<t<u, x<^Es, z^Eu

P(.s,x- tr,z) = J p(s,x-, t,y)mt(dy)p(t,y; u,z).

Удовлетворяющую этому уравнению функцию p(s, х; t, у) мы назовем 
переходной плотностью процесса (жг, Р). Формулы р (s, х; t, dy) — 
=p(s, х; t, у) -mi(dy) и p(s, dx-, t, y)=ms(dx)p(s, x; t, у) задают соответ­
ственно переходную и копереходную функцию (xt, Р). Если процесс (х(, 
Р) праворегулярен, то переходную плотность можно выбрать так, чтобы 
функции p(t, xt, и, Г) и p(s, Г, t, Xt) были непрерывны справа по t п.н. 
(последняя лишь при i>s). Мы назовем такую плотность канониче­
ской.

По переходной функции p(s, х; t, dy) строится пространство входов 
Es+ (см. ('))• Каждой точке х^Е„+ соответствует марковский процесс (xt, 
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Р,.х) с переходной функцией р(s, х\ t, dy), причем Ps, x{cc=s}=Ps,x{Q}=L 
Аналогично по копереходной функции строятся пространство выходов и 
процессы (xt, Р’’х).

В (2) определена функция ;г(+(со) со значениями в Et+ (а(со) =Ci<3 (со)) 
такая, что для любого марковского процесса (xt, Р) с переходной функци­
ей p(s, х; t, dy) пара (xt+, Р) является праворегулярным процессом и при 
любом е>0 xt+ п.н. выражается через х„, t<s<t+e. Процесс (xt+, Р) мы 
назовем правой регуляризацией (xt, Р). Аналогично определя­
ется левая регуляризация (z(_, Р) (в пространстве Et_).

3. Положим zf=(xf_, xt+) и рассмотрим в пространстве EtEKEt+ про­
цесс (z(, Р). В объединении Z всех множеств EtA<El+, t<=T, вводится изме­
римая структура такая, что если Г — измеримое подмножество пространст­
ва Z, то измеримо множество пар {(i, со): г4(со)еГ} и, следовательно, име­
ет смысл выражение

v(D=pfXr«M(dt) (1)

(оно задает среднее время, проводимое в Г траекторией zt, если мерить вре­
мя с помощью функционала А). Назовем меру v, определенную формулой 
(1), спектральной мерой аддитивного функционала А.

Основным результатом настоящей заметки является следующая
Теорема 1. Спектральная мера любого аддитивного функционала 

о-конечна и удовлетворяет условию
З.А. Еслиг^Г для всех £е(сс, Р) п.н., то v(T)=0.
Всякая о-конечная мера v, удовлетворяющая условию З.А, является 

спектральной мерой одного и только одного нормального аддитивного функ­
ционала. Этот функционал непрерывен тогда и только тогда, когда выпол­
нено условие

3. Б. Если ггЕГ не более чем для счетного множества значений t п.н., 
7’Оу(Г)=0.

Из теоремы 1 вытекает, что класс всех нормальных аддитивных функ­
ционалов от (xt, Р) совпадает с классом всех аддитивных функционалов 
от (ж1+, Р) и с классом всех аддитивных функционалов от (xt-, Р).

4. Обозначим через &, <S_ и + соответственно суммы множеств Et, Et- 
и Et+, t^T. Пусть f — функция на (S. Назовем ее правой регуляри­
зацией функцию на &+, определенную формулой f(s+, х) =lim Ps. xf(t, 
xt) при t\s (если этот предел существует при всех (s, x)^<F+). Аналогич­
но, левая регуляризация / — это функция на определенная 
формулой f(s_, х) =lim Ps */(i,  xt) при its. С помощью регуляризации пе­
реходной плотности p(s, х; I, у) получаем функции р(s+, х\ t, у), p(s, х; 
t—, у) и p(s+, х; t—, t) (первая из них —правая регуляризация f(s, х)~ 
=p(s, х; t, у), вторая — левая регуляризация g(t, y)=p(s, х; t, у), третья 
является одновременно правой регуляризацией F(s, x)=p(s, х; t—, у) и 
левой регуляризацией G(t, y)=p(s+, х; t, у).

Будем говорить, что марковский процесс (xt, Р) подчинен марков­
скому процессу (xt, Р) , если

P{xs^dx, xL^dy}=g)s, х)Р {xs<^dx, xt^dy}h(t, у). (2)

Из (2) вытекает существование левой регуляризации функции g и пра­
вой регуляризации функции h. Назовем два процесса подобными, если 
они подчинены друг другу.

Доказательство и приложения теоремы 1 опираются на 
следующую лемму:

Лемма 1. Пусть А — аддитивный функционал от марковского процес­
са (xt, Р). Изменив значения А на множестве P-меры нуль, можно считать 
его аддитивным функционалом от всех процессов, подчиненных (xt, Р). 
При этом, если Р и Р связаны формулой (2), то для любой измеримой 

1242



функции /^0

Р J/(zt)A(rfO=Pf xt_)h(t+,x,+)A(dt). (3)

Из леммы 1 нетрудно вывести, что P{A(s, и) |a:s, хи}= $ p(s, xs; t, z; и, 
xu)v(dz) (п.н.), где p(s, v; t, x, y; u, w)=p(s, v; t-, y)p(t+, x; u, w)p(s, 
v; u, w)~l. С помощью этой формулы доказывается, что если А — нормаль­
ный функционал и случайная величина £ выражается через х;, 1^Т, то 
Р§Л(«, i] однозначно определяется спектральной мерой v. Стало быть, нор­
мальный функционал определяется своей спектральной мерой однозначно.

5. Наметим теперь основные этапы построения функционала А по 
мере v.

Пусть p(s—, х; t—, у) — переходная плотность процесса (xt_, Р). Из 
теории (3) вытекает, что существует одна и только одна вероятностная 
мера нх в пространстве Es+ такая, что p(s—, х; t—, v) = $ nx(dy)p(s+, у; 
t—, v). Назовем x т о ч ко й ветвления, если хх не сосредоточена в од­
ной точке. Положим (z, y)^D, если хх сосредоточена в точке у. Обозначим 
через Q дополнение D в Z и через Q' — множество точек (ж, у) таких, 
что х не является точкой ветвления. Доказывается, что Q и Q' измеримы 
и п.н. множество A(o)) = {Z: zt(<в)не более чем счетно. Обозначим че­
рез у (Г) математическое ожидание числа попаданий zt в ГП(). Мера у о- 
конечна.

Пусть v — с-конечная мера, удовлетворяющая условию З.А. Предполо­
жим сначала, что v сосредоточена на Q. Тогда она абсолютно непрерывна 
относительно у. Обозначим через q соответствующую плотность и рассмот­
рим на прямой дискретную меру A{i}=y(z1) (она сосредоточена п.н. на 
счетном множестве A(co)). Легко проверить, что спектральная мера А сов­
падает с V.

Пусть теперь v сосредоточена на D. Положим p(B)=v(n_1B), где л — 
проектирование Z на 8— Из З.А. вытекает, что:

5.А. Если xt-^B при всех fe(a, р) п.н., то р(5)=0.
Опираясь на лемму 1 и результаты Мейера о разложении супермартин­

галов ((4), глава 7), мы доказываем следующее утверждение.
Лемма 2. Если р—с-конечная мера в 8-, удовлетворяющая 5.А., то 

найдется аддитивный функционал А' от процесса (xt+, Р), такой, что: 
а) для любой измеримой функции ф>0 в пространстве 8-

б) спектральная мера у' функционала А' равна нулю на Q'.
Из а) вытекает, что у'(л~'В) =ц(5) =v(n_15). Но если Г^О, то Г= 

=л_1(лГ)ГЮ и, опираясь на б), заключаем, что л’'(Г)=у(Г). Пусть v"— 
ограничение меры v' на Q и А" — соответствующий функционал. Тогда 
спектральная мера функционала А=А'~А" равна v.

6. Все сказанное сохраняет силу, если под Т понимать не всю число­
вую прямую, а некоторое ее подмножество. Мы остановимся на случае, 
когда Т — положительная полупрямая и пространство состояний Et=E не 
зависит от t. Введем в пространство траекторий Q преобразования сдвига 
(0rco) (Z)=®(f+r) и рассмотрим соответствующие операторы на функциях 
^имерахР: 0г|(и) =£(0гсо), (P0r) (С) —Р(0г_1С). Назовем процесс (ж6Р) 
квазиодпородным, если при любом г>0 он подобен процессу 
(ж;, Р0Г). (Этим свойством обладают, например, все процессы с однород­
ной переходной функцией и эквивалентными распределениями т(.) Для 
квазиоднородного процесса P{x,<^dx; x^dy}=g(s, x)q(s, dx; t, dy)h(t, y), 
где g, h>0 и q удовлетворяет при всех r>0, t>s>0 соотношению q(s+r, 
dx; t+r, dy')—q)r(s')q(s, dx; t, dy'](pr(t)~i (ср положительна). Все множест­
ва Et-'={x: x^Et_, g(t—,x')<°o} можно естественным образом отождест­
вить. Так же можно поступить и с множествами Et+'={x: x^Et+,h(t+,x)< 
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<°°}. При этом сумма 7/ множеств Et-''AEt+' по всем 1~Т отождествля­
ется с произведением трех пространств Е-'ХЕ+'Х.Т.

Аддитивный функционал А назовем однородным, если при любом 
г>0 п.н. 0ГА (В) =А (В+r) при всех В. Доказано, что аддитивный функ­
ционал от квазиоднородного процесса однороден тогда и только тогда, 
когда его спектральная мера сосредоточена на Z' и имеет вид g(t—,. 
x)h(t+, y'jXidx, dy), где X—о-конечная мера в Е_''Х.Е+'. Назовем ее оп­
ределяющей мерой функционала А. Для любой измеримой 
функции /5г0 в Е_'"АЕ+' и любых n>s>0

Р J/(z()A(dO= j J g(t-,x')h(t+,y)f{x,y')'K(<dx,dy)dt.
s s E_'XE+'

Из теоремы 1 легко выводится, что всякая о-конечная мера X, удов­
летворяющая условию З.А, является определяющей для одного и только 
одного нормального однородного аддитивного функционала. Этот функци­
онал непрерывен тогда и только тогда, когда выполнено условие З.Б.

Центральный экономико-математический институт Поступило
Академии наук СССР 27 V 1973
Москва
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