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1. Вопросы существования оптимальных управлений занимают принци­
пиальное место в теории оптимальных процессов (*), они исследованы в 
многочисленных работах. Традиционные методы доказательства, основан­
ные на идеях компактности и полунепрерывпости, сводят вопросы суще­
ствования решений рассматриваемых ниже задач к установлению некото­
рых свойств замкнутости траекторных множеств в конечномерных или 
функциональных пространствах. На таком пути получены теоремы суще­
ствования с весьма жесткими предположениями об определенной выпукло­
сти множества допустимых скоростей (2,г) и линейности системы по со­
стоянию ('*). Традиционные методы доказательства характерны тем, что, 
нацеливаясь на свойства типа замкнутости снизу (5), они не учитывают 
многих важных параметров задачи оптимизации (граничные условия, зна­
чения минимизируемого функционала), от которых, как правило, и зависит 
существование решения в конкретных задачах. Вместе с тем условия вы­
пуклости множества допустимых скоростей не только достаточны, но и не­
обходимы (5,6) для замкнутости снизу. Таким образом, возникает необхо­
димость получения теорем существования, учитывающих специфику кон­
кретных задач (индивидуальные теоремы).

2. Рассмотрим следующую задачу оптимального управления в классе 
измеримых функций:

x=/(z, и, t), (ж(г0), ta)^D, ^еГ, t^T, u(t)^U(t)<=U, (1)

1(х, и) , Ь)-*ппп, (2)
где Т — отрезок прямой, D^P+XT и Г<=Г — компакты конечномерных про­
странств, U — полное сепарабельное метрическое пространство.

Предположим, что:
а) скалярная функция ср (х, i) полунепрерывна снизу по (х, t), тг-мер- 

ная функция f(x, и, t) непрерывна по (х, и), измерима по t и удовлетво­
ряет неравенству ||/(аг, и, t) ||«sn(£)£■(||;г||), где П(^) суммируема на Т, 
g(M) непрерывна и g-(||хг||) =0(||ж||) при ||х||-><»;

б) множество $и={(гг, t)^UXT, u*=U(£)} аналитическое (modO), мно­
жество Q(x, t)={q: q—f(x, и, t), iieU(t)} полунепрерывно сверху по х 
в смысле Куратовского (см., например, (6)).

Для доказательства теорем существования в задаче (1), (2) рассмотрим 
следующую вспомогательную задачу:

x=g(x, «в, t), x(t0), (t0)(=D, ti^T, a(f)<^Q(t)=PXUn+i(t), (3)

(4)I(x, о) =<р(ж(г1), Щ->тт,

При условиях а), б) в задаче (3), (4) существует оптимальное управ­
ление a0 (t)={a? (t), 1=1,..., п+1, в классе измеримых
функций (2,7). Индивидуальные теоремы существования в задаче (1), (2) 
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получим с помощью необходимых условий оптимальности во вспомогатель­
ной задаче (3), (4), которые позволяют привлечь конструктивную инфор­
мацию об ее решениях. При этом теоремами существования «-го 
порядка естественно назвать такие теоремы, которые получаются в рас­
сматриваемой схеме с помощью необходимых условий оптимальности «-го 
порядка (8). Предполагаемый подход устанавливает взаимосвязь между 
теорией существования и теорией необходимых условий оптимальности.

3. Приведем сначала некоторые теоремы существования первого поряд­
ка в задаче (1), (2), которые включают большинство из ранее известных 
результатов. Дополнительно к условиям а) б) предположим, что:

в) функции q>(x, t), f(x, и, t) дифференцируемы по переменным состоя­

ния, причем (х, t) непрерывна по х, ui 0 непрерывна по (х, «),

измерима по t и ограничена по норме суммируемой на Т функцией.
Рассмотрим функции Гамильтона

n+1

г=1 
где штрих означает транспонирование. Вдоль решения задачи (3), 
построим множества M°(t) и V°(t) по следующему правилу: 
М° (2) — (и: ueeU (t), Н (х° (t), i|>°(2), и., t) — max H (x° (t), i|>°(2), u, t),

V°(t) = {v: v=f(x°(t), u, t), u^M°(t)},

ф=Д1),
ox ox

(5)

(6)

Из принципа максимума Понтрягина в задаче (3), (4) заключаем, что 
оптимальное управление со0 (0, 2о^2<2ъ является особым на множестве 
й°(2) =РХ (ЛГ(2) )n+1, т. е. для всех osQ°(2) и п.в. 2е[20, 2Д выполняется

^(ж°(«), , а>°(2), г) =гр(ж°(«), ф°(2), и, t). (7)

Из соотношения (7) вытекает следующая теорема существования 
(близкие теоремы получены в (9,10)).

Теорема 1. Пусть параметры задачи (1), (2) удовлетворяют условиям 
а)—в). Если вдоль некоторого решения задачи (3), (4) множество V°(t) 
(5) выпукло при п.в. 2е[20, ij, то в задаче (1), (2) существует оптималь­
ное управление.

При условиях теоремы 1 оптимальная траектория х°(2) задачи (3), (4) 
реализуется в исходной задаче (1), (2). Приведем одну более тонкую тео­
рему первого порядка, которая гарантирует существование решения задачи 
(1), (2), в то время как отмеченное выше свойство может не выполняться. 
Обозначим через х (п—1)-мерный вектор, составленный из первых ком­
понент «-мерного вектора х=(х, хп).

Теорема 2. Пусть параметры задачи (1), (2) удовлетворяют услови­
ям а) —в). Предположим далее, что f (х, и, t) =А (и, t) x+b («, 2), /п(ж, u, t) — 
=fin(x, 2)+/2п(щ t), функция <р(ж, 2) вогнута по х.

В задаче (1), (2) существует оптимальное управление, если вдоль не­
которого решения задачи (3), (4) множество 5“(2) = {s: $=(ф°(2) У А (и, t), 
ш=М°(У)} выпукло при п.в. 2е[20, 2Д и выполняется одно из свойств:

1) —-Ця0 (20,20 >0,
дхп

fm(x,t') вогнута по х;

2)
дхп

fm(.X,t) выпукла по х;

3) (я0(20,20=0.
дхп
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Теорема 2, которая обобщает результат из ('*), доказывается с помощью» 
(7) и формулы приращения функционала качества в (3), (4) (см. (12)).

4. Рассмотрим некоторые теоремы существования высокого порядка, 
полученные с помощью необходимых условий оптимальности особых управ­
лений. Предположим, что:

г) /(х, и, t)+fz(u, t), функции ф(х, t) и fi(x, t) дважды непре­

рывно дифференцируемы по х, причем измерима по t и ограни­

чена по норме суммируемой на Т функцией.
Вдоль оптимальной траектории a;°(Z), задачи (3), (4) постро­

им функцию ф°(£) (6), множества V°(Z), 77 (i) и матрицы A’°(i), 4го(i):
ZVW=0}, X“(Z) = ^(x’(Z),^(i),Z), (8>

(0 =- (0, i) (t) (0, i) -K° (t),
ox ox

4ro(o=-’^(x°(f1),z1). (9)
dor2

Вектор a^Rn и соответствующую ему прямую {аа: —>»<а<оо} назо­
вем допустимыми (недопустимыми) относительно матрицы S<^Rn\ если 
a'Sa^O (a'Sa>Q).

Множество V из «-мерного аффинного пространства назовем выпук­
лым относительно прямой {аа: —00<а<00}, a^Rn, если вместе с любыми 
точками vt, v2 со свойством щ—г>2е{аа, — °°<а<°°} оно содержит весь со­
единяющий их отрезок.

С помощью необходимого условия оптимальности с матричными им­
пульсами (8) доказывается следующая теорема существования второго по­
рядка (частные случаи получены в (13)).

Теорема 3. Пусть параметры задачи (1), (2) удовлетворяют усло­
виям а), б), г).

В задаче (1), (2) существует оптимальное управление, если вдоль не­
которой оптимальной траектории задачи (3), (4) при п.в. £e[i0, #»] вы­
полняется одно из следующих свойств:

1) матрица 4го(Z) (9) определенно положительна на L° (Z) (8);
2) множество V°(Z) (5) не лежит на одной прямой, L°(t) содержит ги­

перплоскость недопустимых относительно матрицы 4го (Z) векторов;
3) множество V°(£) выпукло относительно всех допустимых прямых 

матрицы 4го (0-
Следующая теорема существования третьего порядка доказываете# 

с помощью необходимого условия оптимальности типа Келли (“,8) в клас­
се измеримых функций. Полученные результаты (частные случаи см., 
в (13)) близки по форме к результатам второго порядка (теорема 3), но не­
зависимы от них.

Теорема 4. Пусть параметры задачи (1), (2) удовлетворяют услови­
ям а), б), г).

В задаче (1), (2) существует оптимальное управление, если вдоль 
некоторой оптимальной траектории задачи (3), (4) при п.в. t^[t0, tt] вы­
полняется одно из следующих свойств: \

1) матрица Ka(t) (8) определенно положительна на
2) множество V°(t) выпукло относительно всех допустимых прямых 

матрицы K°(t).
5. Теоремы 1—4 выражают условия существования оптимальных уп­

равлений в задаче (1), (2) через решение некоторой вспомогательной за­
дачи, тесно связанной с исходной задачей оптимизации. За счет этого и 
учитывается специфика конкретных задач. Проведенный анализ и много­
численные примеры показывают, что в конкретных ситуациях данные тео-



ремы позволяют судить о существовании оптимальных управлении в за­
даче (1), (2) без предварительного решения вспомогательной задачи. 
С помощью априорных соображений и необходимых условий оптимально­
сти нередко непосредственно удается показать, что те траектории систе­
мы (3), на которых нарушаются условия полученных теорем, не могут да­
вать минимум функционалу (4). Вместе с тем теоремы 1—4 позволяют 
выделять классы систем, в которых условия существования оптимальных 
управлений непосредственно выражаются через все параметры задачи 
оптимизации. Приведем примеры.

Пример 1. Рассмотрим задачу (1), (2) вида х1=и2х1+и, х2=х2+и, 
х4(0)=1, х2(0)=0, /7={—1, 0, 1}, 1(х, и) =х2(1) — xt (1) ->min.
Не прибегая к решению вспомогательной задачи, легко заключить, что 

ЛГ (£) = {—1, 1}. Следовательно, 5’(i) = {l} и существование оп­
тимальных управлений в рассматриваемой задаче гарантируется теоре­
мой 2. Отметим, что в данном примере не «работает» ни один из из­
вестных нам результатов.

Пример 2. Рассмотрим одномерную задачу Больца, которая приво­
дится к двумерной задаче (1), (2): x—a(t)x+b(u, t), a?(i0)^0, u(t)^U,

В данной ситуации условие 1) теоремы 4 эквивалентно неравенству 
а2/

-----•(x°(t),0<0, mesB=ti—
5x

(10)

По параметрам рассматриваемой задачи построим функции

а

m(t) = min b(u, f),
ueU

1(f) = max b(u, t),
ueU

to to

dr,

t t *
p (£)=[}(£) exp Ja(r)dr j — Jm(T)exp£ — Ja(s)ds^j dr.

to to t0

Обозначим
to to to

<0

89={B: Л], mes В=^—10}, r0 = sup inf r (/), p0 = inf sup p (£).
Be-s teB ве® (ев

Легко видеть, что неравенство (10) заведомо выполняется, если спра­
ведливо одно из условий хо<Го, Хо>Ро, при которых, таким образом, рас­
сматриваемая задача всегда разрешима.
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