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Доказана разрешимость задачи о соударении двух осесимметрических 
газовых струй, приближенное исследование и численные расчеты которой 
изложены в (*, 2). Рассмотрена также осесимметрическая задача об исте­
чении газа из сопла заданной формы с внутренним телом и ее предельные 
случаи: истечение из сопла, удар струи о стенку. Показано, что при звуко­
вых скоростях на свободных границах, выравнивание струй, движущихся 
вдоль оси симметрии, происходит (аналогично плоскому случаю (3)) на 
конечном расстоянии.

1°. Постановка задач. Известно ('), что стационарное потенци­
альное течение баротропного газа описывается уравнением

дгл <Э2Ф
div (р grad ф) = / , =

/ 1 , дф дф \
P=PW, 9=1ггааф1, aiS= I 6(jp+ — р -—— .

\ q <Jx,: oxj /

Задача I (осесимметрическое соударение двух струй). Требуется 
определить область с границей Sx и функцию ф^х,. х2, ^з)—ф(г, ж3), г= 
= (яЛ+яг2)7’, удовлетворяющую уравнению (1) и условиям

(Уф-п)=0, |Уф|=Зо, хе.?,, (2)
ф(0,0) = Уф(0,0)=0, ф(0, ±оо)=-оо, ф(оо, Яз)=°о, x3^S„ (3)

\7ф(г0±, ±°°) = {0, 0, ±д0} (г0*, ±оо)е5я. (4)

Задача II (истечение струи из сопла заданной формы). В области 
12х, ограниченной заданными поверхностями Sxi={r=fl(x3), —°°<х3<х3°}, 
Sx2={x3—f2(r), /2(0) =0, г<г0} и свободной границей Sx°, определить реше­
ние уравнения (1) ф(г, х3), ф(0, 0) = \7ф(0, 0) =0, удовлетворяющее усло­
виям

(Гф-п)=0, xe5x=5x0+Sx‘+Sx2, (5)

|^ф|=д0, ф(х1, а:2, ±~)=<», хе5я; (6)

здесь п — вектор внешней нормали к Sx, Уф={5ф/бж,, ду/дх2, дц>/дх3}, х= 
= {xt, х2, х3} и Го*, q0 — заданные положительные постоянные.

Решения сформулированных выше задач будут получены как предел 
последовательности решений вспомогательных задач в конечных областях. 
Сформулируем вспомогательную задачу 1.1 и проведем доказательство в 
случае 1.

Задача 1.1. В области Qx, ограниченной плоскостями 5х±={^3=Жз±^ 
^0} и неизвестной границей Sx+Sx, требуется определить решение ф(г, 
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хг), <р(0, 0) =V<p(O, 0) =0, уравнения (1), удовлетворяющее условиям

(V<p-n)=0, |V<p|=g0, хе£’, (7)

ф=фо±, Ф=Ф1, |^ф|=д0, хе5х‘, (8)
г(агз±)=г0±, хе&’. (9)

Числовые же параметры х3±^0 (либо ф0±<0) при заданных ф1>0, ^*>0 
также являются искомыми.

2°. Разрешимость задачи 1.1. Известно, что в случае осе­
вой симметрии можно ввести функцию тока ф(г, х3) и получить уравнения

дх3 дг дг дх3
~— = грТГ’ 7“' = _грТГ_’ дф дф Оф дф

dO ding дб Кр д Ing 1 дг
дф Р дф ’ дф г дф гр дф

. / дф 1 дф\ 1 d
0 = агсгЦ— к)\, К =—- —

Р3 dq
'(р?).

(Ю)

(И)

При этом условия (6), (7) примут вид

q=q<> прп ф=ф± и ф=ф1,

0=0 при ф=+0 и ф=ф0+; 0=л при ф=—0 и ф=ф0_.
Рассмотрим вспомогательную систему

дд
дф

дх3
<Эф

<30 
дф

дг дхз
дф--- Р дф ’

Кр ding R' дг
R <Эф Я2р <Эф

(12)
(13)

(10')

(IIs)

где 7?(г)=1—Х+ХЯе, 7?e=(r+s)/(l+er), 0<е<1, А,е[0, 1], г>0. 
Будем предполагать пока, что

||1п p(g) m *£v, O=CgCgo, m^l, a>0, (14)
Ga

1 d
K- — —— (pg)>vt>0, O<g<go. (15)

P dq

Лемма 1. Пусть выполнено (14), (15). Тогда при всех е>0, Х=1 и 
заданных параметрах ф_<О<ф+, ф0±<0, ф1>0, 6>0 (достаточно малое чис­
ло) существует решение задачи (10е), (11е), (12), (13) такое, что

х3(0,0)=0, г(О,О)Э=б, • (г3,г)еС:+‘, (0,д)еСГ

в (за исключением угловых точек).
Функции (х3, г) осуществляют при этом однолистное квазиконформ­

ное отображение области Йф на Qr: {хз~<Хз<х3+, Ь<т<С}.
Оценки леммы обеспечивают невырожденность систем (10е), (1Г) и 

областей Q',6t Qre’® прп всех е>0 (6>0), что позволяет перейти к преде­

лу при е-*0 и получить совокупность решений уравнения (1) в областях 
Qx®=(г>6), удовлетворяющих при (х^+хг) 'й=6 условиям

dcp/dXi=дф/дх2=0, х3 <ж3<ж3+; дф/дх3=0, х3=0. (16)

Заметим, что переход к уравнению (1) возможен лишь при е=0.
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Методы работ (4, 5) позволяют получить оценки гладкости решения, 
не зависящие от б, и перейти к пределу при б->0. При этом устанавлива­
ются (при е=0) неравенства

0=S0(x)=Sn, хе£2х5; |lng|CC0, xeQx’n( |x|Sset), (17;

?(x)-sin 0(x)^Cr, xeQ,'; dq/дхз^О, r=6, x3^0, (18)

C<( | (19)
где постоянные С, Со зависят лишь от v, q0, а Со еще от et и v(.

Теорема 1. Пусть выполнены условия (14), (15). Тогда задача 1.1 
всегда имеет (при заданных х-.~^0, ф(>0, ^*>0) по крайней мере одно 
решение ф(х)еСГ+1 всюду в Qx (за исключением, может быть, линий L* 
стыка границ Sx°, Sx', SZ).

3°. Пусть теперь величина скорости на струях равна звуковой. Рас- 
-смотрим последовательность задач с qac=q3B—е, где е>0. Введем анало­
гично (6) функцию

«ЗВ , .
п(ф, ф) = -------ds

J s«
и будем предполагать, что

tf(u)>0, Я(0) =0, tfu>v2>0, Aru„">v3>0, (20)

Теорема 2. Задача 1.1 с q0=q3B при выполнении условий (14) (т— 
=3), (20) всегда имеет решение ф(х)ерР42(йх), (Sx°, Sx)^Cal 0<а<!Д.

Доказательство. Для доказательства достаточно установить 
оценки, не зависящие от е. Сначала доказывается существование фиксиро­
ванной, не зависящей от е окрестности (|х| <б) точки остановки, в кото­
рой |?ф|С<7зв/2, и, следовательно, уравнение (1) равномерно эллиптично. 
Затем, вне круга (|х|<б/2) с помощью (18) доказывается неравенство

|«| (ф, Ф) |^1(б, vi, С) vt= min K(q). (21)
^«зв

Далее, уточняя результаты работы (б) при и существенно ис­
пользуя (18), приходим к оценке

J [КИффЧЧ Vxul‘]da:1dx2d;rJs£C,2.

а’х
Следовательно, n(x)eJV4l(Qxe). Отсюда находим, что и 0(х)еИг4‘, т. е. 
tf(x)eiF42. Теорема 2 доказана.

Полученные оценки и не зависящее от N неравенство (21) позволяют 
осуществить переход при а:3±-»-±<», ф^00. При этом в случае qo=q3B, ана­
логично работе (7), построением барьерной функции доказывается сущест­
вование числа X такого, что при | х31 >Х и т^Го*

q(x)=q3B.

Т е о р е м а 3. Пусть q0<q3s и выполнены условия (14), (15). Тогда за­
дача I всегда имеет решение ф(х)еС™+1, |x|<3V, свойства которого опре­
деляются леммой 1 и теоремой 1.

При q0=q3B и выполнении условий (21), (14) (пг—3) задача I всегда 
имеет решение ф(х)еИ/|х|<Л’.

Относительно задачи II сформулируем лишь результат при q3=qBB.
Теорема 4. Если заданные границы Sxl, Sx~ удовлетворяют условиям

A^const при |а:3|>Х (X достаточно велико),

(-1)‘//>0, k=i, 2, |ln|r-/r(r)||<v4, ге5Д 
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то при выполнении (14) (т=3) и (21) задача II всегда имеет решение 
ф(х)еИ?, |х| <Х.

В заключение выражаю искреннюю благодарность В. Н. Монахову за 
постоянное внимание к данной работе.
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