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1. Рассмотрим преобразователь W, со скалярным входом и и выхо­
дом х. Через А (и, W) обозначим множество возможных состояний а пре­
образователя W при входе и. Относительно выхода х будем считать, что 
он однозначно определяется входом и и состоянием a: x=F(u, а). Преоб­
разователь определяется тем, как зависит выходной сигнал а; (2) от пере­
менного во времени входного сигнала u(t). Для точной математической 
постановки задачи нужно описать допустимый класс U переменных вход­
ных сигналов u(t). После этого преобразователь W становится операто­
ром, сопоставляющим каждому входу u(t)<sU и каждому начальному 
состоянию «„е.4 [ и (to), W] переменный выход

x(t)=W[t0, a0]u(t), t>t0. (1)

Мы будем считать, что переменное состояние a(t)^A[u(t), W] преобра­
зователя также однозначно определяется входом u(t)^U, т. е.

а(<)==Г[^, а0; t>to. (2)
Если оператор (2) известен, то, конечно, определен и оператор (1).

Ниже рассматриваются лишь физически реализуемые (*) преобразо­
ватели, т. е. операторы (1) и (2) предполагаются вольтерровыми.

При феноменологическом описании конкретных преобразователей 
обычно указываются рецепты определения значений операторов (1) и (2) 
лишь на переменных входах специального типа (гармонических, кусочно­
монотонных и некоторых других). В этих случаях распространение опе­
раторов (1) и (2) на более широкие классы входов часто требует допол­
нительных построений (см., например, (2)).

В качестве U приходится в зависимости от конкретных ситуаций рас­
сматривать различные классы функций u(i), —t»<£<oo. Во всех случаях 
будет предполагаться, что класс U обладает следующими свойствами: 
а) из u(t)^U вытекает принадлежность классу U любой функции 
и (<+/&); б) по любым числам ti<t2 и любым входам u2(t)^-U мож­
но построить такой вход u(t)^U, что u(f1)=u1(/i) и u(t2)=u2(t2). Отно­
сительно преобразователя W будет предполагаться, что он стационарен, 
т. е.

Г[£о, а0’, W]u(t) =r[t0+h, а0; W]u(t+h),
и что он обладает полугрупповым свойством, выражаемым равенством

Г[£о, а0; W]u(t) =r(ti, Г[i0, а0; W]u(.ti); W}u(t), (3;

Склейкой (точнее, io-склейкой) функций Ui(t), и2(Т), —oo<t<ooi 
удовлетворяющих условию ul(t0)=u2(t0), называется функция u(t), совпа­
дающая с Ut(t) при i<i0 и с u2(t) при t^to. Класс U назовем инва­
риантным относительно склейки, если он вместе с любыми 
двумя функциями 7/1 (i) и u2(t) содержит каждую их склейку. Класс U 
назовем слабо инвариантным относительно склейки, если
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для каждой склейки u(i) двух функций класса U найдется такая строго 
возрастающая непрерывная функция <p(i), <р(—<») =—оо, ф(°°)=оо, что 
м[ф(^)]е[7. Инвариантными относительно склейки будут, например, 
класс кусочно-гладких функций, класс непрерывных функций, класс 
функций непрерывных справа, класс всех функций и т. д. Класс непре­
рывно дифференцируемых функций слабо инвариантен относительно 
склейки.

2. Пусть преобразователь Ж определен на том же классе U входных 
функций, что и преобразователь W, и пусть А (и, Ж0)'=Л(и, W) при 
всех и. Если при каждом аа<=А [u(f0), ИЛ>] переменные состояния и выхо­
ды преобразователей Wc и W определяются одинаковыми операторами 
(1) и (2), то назовем преобразователь Wo сжатием преобразова­
теля W.

Преобразователь W назовем управляемым, если каждым двум 
парам {щ, at} и {и2, а2}, где Ui и и2 — значения некоторых функций из U, 
a а^А(и(, W), соответствует такой переменный вход u(t)^U, что 
при некоторых tiCi2 выполнены равенства u(f,)=w1, u(t2) = и2 и
Г[К, щ; W]u(t2)=a2. Если объединение всех множеств А (и, W) конечно, 
то W называется преобразователем с конечным числом со­
стояний.

Теорема 1. Каждый определенный на инвариантном относительно 
склейки классе U переменных входов преобразователь РЕ с конечным чи­
слом состояний имеет управляемое сжатие.

Преобразователь W назовем безынерционным, если при любых 
входах u(t), v(t)eU, связанных равенством и (t) =u[q> (t) ], где ф^) не­
прерывна и строго возрастает, прпчем ф(—°°)=—<» и <р(оо)=о°, спра­
ведливо равенство

r[i0, а0; РР]к(^=Г[ф(г0), а0; W]и[ф(t) ], Z>t0.
Теорема 2. Каждый определенный на слабо инвариантном относи­

тельно склейки классе U переменных входов безынерционный преобразо­
ватель W с конечным числом состояний имеет управляемое сжатие.

В условиях теорем 1 и 2 управляемые сжатия не определяются, конеч­
но, единственным образом. Отметим еще, что в условиях этих теорем для 
любой пары {и0, аэ}, ая^А(и0, W), найдутся такие u(t)<^U и управляе­
мое сжатие Wo преобразователя W, что u(to)=u<> и Г[Л>, а0; W]u(tt)s 
^A[u(ti), Wo] при некотором tt>t0.

3. Реле —это преобразователь с двумя состояниями 0 и 1; выход х
совпадает с состоянием а. Каждое реле R (а, (3), с гистерезисом ха­
рактеризуется порогом включения (3 и порогом отключения а (см., напри­
мер, (3, 4)). Множество Л (и; а, [3) состояний реле R (а, р) состоит из 
одного числа 0 при и<а, чисел 0 и 1 при а<п<[3, числа 1 при п>(3. 
Расширяя обычное описание (3, 4) работы реле, можно определить преоб­
разователь-реле на множестве U всех функций u(i), сопоставляя каждо­
му переменному входу u(f) и каждому начальному состоянию a (to) пере­
менный выход

a(Z)=r[^, а(^); а, ^]w(i),
равенствами: a(i)=a(/0), если ос<и(т)<[5 при £о<т=С£; a(t) — 1, если 
найдется такое T.e(i0, i], что и(т»)5*!3 и п(т)>а при т.<т<£; а(£)=0 в 
остальных случаях. При таком определении реле является стационарным, 
безынерционным и управляемым преобразователем; для него справедливо 
полугрупповое равенство (3). Реле является управляемым преобразовате­
лем и на различных более узких классах U функций (на классе измери­
мых функций, на классе непрерывных функций, на классе гладких функ­
ций и т. д.). Реле преобразует каждый измеримый вход в измеримый 
выход, каждую непрерывную справа функцию в функцию также непре­
рывную справа. Особо важно для нас следующее простое свойство реле.
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Теорема 3. Преобразователь R(a, Р) монотонен1, если u(i)^r(i) 
при t>t0, а^А [гл(i0), а, £], b^A [v(i0), a, [J] и а^Ъа, то

T[i0, «0; а, |3]и(Z) СГ[i0, b0; a, p]n(i), i>to. (4)
4. При помощи параллельных и последовательных соединений можно 

из простых преобразователей конструировать более сложные блок-преоб- 
разователи. В частности, из реле, умножителей на постоянные коэффи­
циенты и сумматора можно построить преобразователь

И7=ц1/?(а1, p1)+„.+nJ?(a*, рА); (5)
здесь щ^О, все реле R (а„ РЭ различны, 0С1=^...<аА; если а(=аг+1, то 
pi+l>p,. Состояниями преобразователя (5) являются векторы {at, ..., ак}, 
каждая компонента а, которых — это состояние реле R (а;, р,). Преобразо­
ватель (5) определен на всех входах, измеримые входы он преобразует в 
измеримые выходы. Преобразователь (5) управляем в том и только том 
случае, если «i<a2<...<a* и р1>р2>...>рА. Теоремы 1 и 2 в случае пре­
образователя (5) допускают усиление.

Теорема 4. Преобразователь (5) имеет единственное управляемое 
сжатие WQ на классе U непрерывных кусочно монотонных функций. Мно­
жества А (гл, РРо) состояний этого сжатия состоят из таких векторов 
{at,..., щ}, что a^aj, если р,срз, г</.

Реле R(a, Р) и 2?(у, 6) назовем несравнимыми, если (а—у) ■ (р—6)<0. 
Через n(W) обозначим количество подмножеств (из двух, трех и т. д. 
элементов) системы реле 7?(a„ р,), i=l, ..., k, состоящих из попарно не­
сравнимых элементов.

Теорема 5. Количество состояний управляемого сжатия Wo преоб­
разователя (5) равно l+fc+^H7).

Удобным аппаратом для доказательства утверждений типа теорем 4 
и 5 являются известные диаграммы Прейсаха (5,6).

В виде (5) может быть представлен не каждый блок-преобразователь, 
в который входят последовательные и параллельные соединения реле. 
Описание управляемых сжатий таких блок-преобразователей является 
более сложной задачей. Для нас важна лишь одна общая характеристика 
таких блок-преобразователей, вытекающая из теоремы 3.

Теорема 6. Пусть блок-преобразователь W построен из конечного 
числа реле, умножителей на неотрицательные коэффициенты и сумматоров 
при помощи последовательных и параллельных соединений (но без обрат­
ных связей).

Тогда W является монотонным преобразователем.
5. Пусть динамика некоторой системы описывается уравнением

Lx(t)=f{t, x(t), W[t0, a0]a:(i)}, (6)

где L — линейный обыкновенный дифференциальный оператор с /’-перио­
дическими коэффициентами, функция Грина /’-периодической задачи для 
которого неотрицательна (например, L дифференциальный оператор с 
постоянными коэффициентами, корни характеристического многочлена 
которого вещественные и отрицательные); /(i, х, у) — скалярная функ­
ция, которая непрерывна и /’-периодична по i, а по переменным х и у не 
убывает; W[t0, a0] — оператор (1), построенный по преобразователю W, 
удовлетворяющему условиям теоремы 6. В изучаемую систему могут вхо­
дить, конечно, и идеальные реле типа sign (х—а). Нас будет интересовать 
вопрос о существовании таких начальных состояний преобразователя W, 
при которых у системы есть /’-периодические при i^i0 колебания.

Для специальных классов уравнений (6) существование решений за­
данного периода и особого вида установлено методом припасовывания и 
методом частотных характеристик А. И. Лурье, Я. 3. Цыпкиным, 
П. В. Бромбергом и другими авторами (см., например, (3,7_9)). В общей 
постановке задача, насколько нам известно, не изучалась.
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Теорема 6 позволяет применить для изучения уравнения (6) утверж­
дения о неподвижных точках типа известного принципа Биркгофа (см. 

)) •
Теорема 7. Пусть при каждом у

lim max У) | —0.

Тогда существует начальное состояние преобразователя W, при кото­
ром уравнение (6) имеет по крайней мере одно Т-периодическое решение.

Предположение о неотрицательности функции Грина оператора L в 
условиях теоремы 7 существенно — можно привести примеры уравнений 
(6) с правой частью простейшего вида /(£)+sign.r, у которых нет Г-пе- 
риодических решений.

Авторы благодарны В. Б. Привальскому и Я. 3. Цыпкину за интерес­
ное обсуждение работы.
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