Full metadata record
DC FieldValueLanguage
dc.contributor.authorKovaleva, V.A.-
dc.contributor.authorКовалева, В.А.-
dc.date.accessioned2021-02-19T10:42:28Z-
dc.date.available2021-02-19T10:42:28Z-
dc.date.issued2014-
dc.identifier.citationKovaleva, V.A. Finite groups with generalized ℙ-subnormal second maximal subgroups / V.A. Kovaleva // Asian-European Journal of Mathematics. - 2014. - Vol. 7, No. 3. - P. 1450047(8 pages).ru
dc.identifier.urihttp://elib.gsu.by/jspui/handle/123456789/16871-
dc.description.abstractA subgroup H of a group G is said to be K-ℙ-subnormal in G [A. F. Vasilyev, T. I. Vasilyeva and V. N. Tyutyanov, On finite groups with almost all K-ℙ-subnormal Sylow subgroups, in Algebra and Combinatorics: Abstracts of Reports of the International Conference on Algebra and Combinatorics on Occasion the 60th Year Anniversary of A. A. Makhnev (Ekaterinburg, 2013), pp. 19–20] if there exists a chain of subgroups H = H₀ ≤ H₁ ≤ · · · ≤ Hn = G such that either Hᵢ₋₁ is normal in Hᵢ or |Hᵢ : Hᵢ₋₁ | is a prime, for i = 1, . . . , n. In this paper, we describe finite groups in which every second maximal subgroup is K-ℙ-subnormal.ru
dc.language.isoАнглийскийru
dc.subject2-maximal (second maximal) subgroupru
dc.subjectsoluble groupru
dc.subjectsupersoluble groupru
dc.subjectminimal nonsupersoluble groupru
dc.subjectK-ℙ-subnormal subgroupru
dc.subject𝔘-subnormal subgroupru
dc.subjectpermutable subgroupru
dc.titleFinite groups with generalized ℙ-subnormal second maximal subgroupsru
dc.typeArticleru
dc.rootAsian-European Journal of Mathematicsru
dc.number№ 3ru
dc.volume7ru
dc.identifier.DOI10.1142/S1793557114500478ru
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
Kovaleva_Finite_groups_with.pdf209.47 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.