Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kovaleva, V.A. | - |
dc.contributor.author | Ковалева, В.А. | - |
dc.date.accessioned | 2021-02-19T10:42:28Z | - |
dc.date.available | 2021-02-19T10:42:28Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Kovaleva, V.A. Finite groups with generalized ℙ-subnormal second maximal subgroups / V.A. Kovaleva // Asian-European Journal of Mathematics. - 2014. - Vol. 7, No. 3. - P. 1450047(8 pages). | ru |
dc.identifier.uri | http://elib.gsu.by/jspui/handle/123456789/16871 | - |
dc.description.abstract | A subgroup H of a group G is said to be K-ℙ-subnormal in G [A. F. Vasilyev, T. I. Vasilyeva and V. N. Tyutyanov, On finite groups with almost all K-ℙ-subnormal Sylow subgroups, in Algebra and Combinatorics: Abstracts of Reports of the International Conference on Algebra and Combinatorics on Occasion the 60th Year Anniversary of A. A. Makhnev (Ekaterinburg, 2013), pp. 19–20] if there exists a chain of subgroups H = H₀ ≤ H₁ ≤ · · · ≤ Hn = G such that either Hᵢ₋₁ is normal in Hᵢ or |Hᵢ : Hᵢ₋₁ | is a prime, for i = 1, . . . , n. In this paper, we describe finite groups in which every second maximal subgroup is K-ℙ-subnormal. | ru |
dc.language.iso | Английский | ru |
dc.subject | 2-maximal (second maximal) subgroup | ru |
dc.subject | soluble group | ru |
dc.subject | supersoluble group | ru |
dc.subject | minimal nonsupersoluble group | ru |
dc.subject | K-ℙ-subnormal subgroup | ru |
dc.subject | 𝔘-subnormal subgroup | ru |
dc.subject | permutable subgroup | ru |
dc.title | Finite groups with generalized ℙ-subnormal second maximal subgroups | ru |
dc.type | Article | ru |
dc.root | Asian-European Journal of Mathematics | ru |
dc.number | № 3 | ru |
dc.volume | 7 | ru |
dc.identifier.DOI | 10.1142/S1793557114500478 | ru |
Appears in Collections: | Статьи |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Kovaleva_Finite_groups_with.pdf | 209.47 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.