Title: X-semipermutable subgroups of finite groups
Authors: Guo, W.
Shum, K.P.
Skiba, A.N.
Скиба, А.Н.
Keywords: finite group
X-semipermutable group
2-maximal subgroup
Supersoluble group
Nilpotent group
Hall subgroup
Issue Date: 2007
Citation: Guo, W. X-semipermutable subgroups of finite groups / Wenbin Guo, K.P. Shum, A.N. Skiba // Journal of Algebra. - 2007. - № 315. - P. 31-41
Abstract: Let X be a non-empty subset of a group G. Then we call a subgroup A of G a X-semipermutable subgroup of G if A has a supplement T in G such that for every subgroup T1 of T there exists an element x ∈ X such that AT x 1 = T1xA. In this paper, we study the properties of X-semipermutable subgroups. In particular, a new version of the famous Schur–Zassenhaus Theorem in terms of X-semipermutable subgroups is given.
URI: http://elib.gsu.by/jspui/handle/123456789/17316
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
Guo_Skiba_X-semipermutable_subgroups.pdf182.31 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.