Полная запись метаданных
| Поле DC | Значение | Язык |
|---|---|---|
| dc.contributor.author | Mirotin, A.R. | - |
| dc.date.accessioned | 2021-03-03T11:52:53Z | - |
| dc.date.available | 2021-03-03T11:52:53Z | - |
| dc.date.issued | 2019 | - |
| dc.identifier.citation | Mirotin, A.R. Perturbation determinants on Banach spaces and operator differentiability for hirsch functional calculus / A.R. Mirotin // arXiv.org.math.FA. - 2019. - arXiv:1806.05066v4. - P. [1-13]. | ru |
| dc.identifier.uri | http://elib.gsu.by/jspui/handle/123456789/17535 | - |
| dc.description.abstract | We consider a perturbation determinant for pairs of nonpositive (in a sense of Komatsu) operators on Banach space with nuclear difference and prove a generalization of the important formula for the logarithmic derivative of this determinant. To this end the Frechet differentiability of operator monotonic (negative complete Bernstein) functions of negative and nonpositive operators on Banach spaces is investigated. The results may be regarded as a contribution to the Hirsch functional calculus. | ru |
| dc.language.iso | Английский | ru |
| dc.subject | Perturbation determinant | ru |
| dc.subject | nonpositive operator | ru |
| dc.subject | Hirsch functional calculus | ru |
| dc.subject | Bernstein function | ru |
| dc.subject | operator monotonic function | ru |
| dc.subject | operator differentiability | ru |
| dc.title | Perturbation determinants on Banach spaces and operator differentiability for hirsch functional calculus | ru |
| dc.type | Article | ru |
| dc.root | arXiv.org.math.FA | ru |
| dc.number | arXiv:1806.05066v4 | ru |
| Располагается в коллекциях: | Статьи | |
Файлы этого ресурса:
| Файл | Описание | Размер | Формат | |
|---|---|---|---|---|
| Mirotin_Perturbation_determinants.pdf | 167.67 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.