Full metadata record
DC FieldValueLanguage
dc.contributor.authorMirotin, A.R.-
dc.date.accessioned2022-05-26T14:24:30Z-
dc.date.available2022-05-26T14:24:30Z-
dc.date.issued2020-
dc.identifier.citationMirotin, A.R. A Hausdorff operator on Lebesgue spaces with commuting family of perturbation matrices is a non-riesz operator / A.R. Mirotin // Russian Journal of Mathematical Physics. - 2020. - №9. - P. [1-11].ru
dc.identifier.urihttp://elib.gsu.by/jspui/handle/123456789/40842-
dc.description.abstractt We consider a generalization of Hausdorff operators on Lebesgue spaces and under natural conditions prove that such an operator is not a Riesz operator provided it is non-zero. In particular, it cannot be represented as a sum of a quasinilpotent and compact operatorsru
dc.language.isoАнглийскийru
dc.subjectHausdorff operatorru
dc.subjectRiesz operatorru
dc.subjectquasinilpotent operatorru
dc.subjectcompact operatorru
dc.subjectLebesgue spaceru
dc.titleA Hausdorff operator on Lebesgue spaces with commuting family of perturbation matrices is a non-riesz operatorru
dc.typeArticleru
dc.number9ru
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
A_HAUSDORFF_OPERATOR.pdf186.48 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.