Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mirotin, A.R. | - |
dc.contributor.author | Миротин, А.Р. | - |
dc.date.accessioned | 2023-03-23T11:06:27Z | - |
dc.date.available | 2023-03-23T11:06:27Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Mirotin A.R. To the spectral theory of discrete Hausdorff operators / A.R. Mirotin // Journal of Mathematical Sciences. – 2023. – Р. [1-10]. | ru |
dc.identifier.uri | http://elib.gsu.by/jspui/handle/123456789/56765 | - |
dc.description.abstract | We show that under an arithmetic condition the spectrum of a bounded multidimensional discrete Hausdorf operator in the Lebesgue space is an annulus (or a disc) centered at the origin, provided the perturbation matrices commute and are either positive or negative defnite. Conditions for a point spectrum of such an operator to be empty are given and its norm is computed. | ru |
dc.language.iso | en | ru |
dc.subject | Hausdorf operator | ru |
dc.subject | Discrete Hausdorf operator | ru |
dc.subject | Spectrum | ru |
dc.subject | Norm of an operator | ru |
dc.subject | Lebesgue spac | ru |
dc.title | To the spectral theory of discrete hausdorff operators | ru |
dc.type | Article | ru |
dc.root | Journal of Mathematical Sciences | ru |
dc.identifier.DOI | https://doi.org/10.1007/s10958-023-06259-7 | ru |
Appears in Collections: | Статьи |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s10958-023-06259-7.pdf | 2.32 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.