Full metadata record
DC FieldValueLanguage
dc.contributor.authorMirotin, A.R.-
dc.contributor.authorМиротин, А.Р.-
dc.date.accessioned2023-03-23T11:06:27Z-
dc.date.available2023-03-23T11:06:27Z-
dc.date.issued2023-
dc.identifier.citationMirotin A.R. To the spectral theory of discrete Hausdorff operators / A.R. Mirotin // Journal of Mathematical Sciences. – 2023. – Р. [1-10].ru
dc.identifier.urihttp://elib.gsu.by/jspui/handle/123456789/56765-
dc.description.abstractWe show that under an arithmetic condition the spectrum of a bounded multidimensional discrete Hausdorf operator in the Lebesgue space is an annulus (or a disc) centered at the origin, provided the perturbation matrices commute and are either positive or negative defnite. Conditions for a point spectrum of such an operator to be empty are given and its norm is computed.ru
dc.language.isoenru
dc.subjectHausdorf operatorru
dc.subjectDiscrete Hausdorf operatorru
dc.subjectSpectrumru
dc.subjectNorm of an operatorru
dc.subjectLebesgue spacru
dc.titleTo the spectral theory of discrete hausdorff operatorsru
dc.typeArticleru
dc.rootJournal of Mathematical Sciencesru
dc.identifier.DOIhttps://doi.org/10.1007/s10958-023-06259-7ru
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
s10958-023-06259-7.pdf2.32 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.