Full metadata record
DC FieldValueLanguage
dc.contributor.authorKovaleva, V.A.-
dc.date.accessioned2019-11-11T13:47:31Z-
dc.date.available2019-11-11T13:47:31Z-
dc.date.issued2013-
dc.identifier.citationKovaleva, V.A. Finite groups with all 2-maximal subgroups K-ℙ-subnormal / V.A. Kovaleva // Mathematical Sciences Research Journal. - 2013. - Vol.17, № 6. - P. 150-155.ru
dc.identifier.urihttp://elib.gsu.by/handle/123456789/7614-
dc.description.abstractA subgroup H of a group G is said to be K-ℙ-subnormal in G (A.N. Skiba) if there exists a chain of subgroups H = H₀ ≤ H₁ ≤ ... ≤ Hn = G such that either Hi-₁ is normal in Hi or | Hi : Hi-₁ | is a prime, for i = 1, ..., n. In this paper we describe finite groups in which every 2-maximal subgroup is K-ℙ-subnormal.ru
dc.language.isoАнглийскийru
dc.subject2-maximal subgroupru
dc.subjectstrictly 2-maximal subgroupru
dc.subjectsoluble groupru
dc.subjectsupersoluble groupru
dc.subjectminimal nonsupersoluble groupru
dc.subjectK-ℙ-subnormal subgroupru
dc.titleFinite groups with all 2-maximal subgroups K-ℙ-subnormalru
dc.typeArticleru
dc.rootMathematical Sciences Research Journalru
dc.number№ 6ru
dc.volume17ru
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
1_Viktoria_Finite20Groups_150-155-страницы-2-7.pdf566.39 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.