Название: The Markov–Stieltjes transform on Hardy and Lebesgue spaces
Авторы: Mirotin, A.R.
Kovalyova, I.S.
Дата публикации: 2016
Библиографическое описание: Mirotin, A.R. The Markov–Stieltjes transform on Hardy and Lebesgue spaces / A.R. Mirotin, I.S. Kovalyova // Integral Transforms and Special Functions. - 2016. - Vol. 27. - №12. - P. 995-1007.
Краткий осмотр (реферат): We prove that the Markov–Stieltjes transform is a bounded non compact Hankel operator on Hardy space Hᵖ with Hilbert matrix with respect to the standard Schauder basis of Hᵖ and a bounded noncompact operator on Lebesgue space Lᵖ [0, 1] for p ∈ (1,∞) and obtain estimates for its norm in this spaces. It is shown that the Markov–Stieltjes transform on L²(0, 1) is unitary equivalent to the Markov–Stieltjes transform on H². Inverse formulas and operational properties for this transform are obtained.
URI (Унифицированный идентификатор ресурса): http://elib.gsu.by/jspui/handle/123456789/41077
Располагается в коллекциях:Статьи

Файлы этого ресурса:
Файл Описание РазмерФормат 
The_Markov-Stieltjes_transform.pdf1.22 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.