Название: On the intersection of maximal supersoluble subgroups of a finite group
Авторы: Guo, W.
Skiba, A.N.
Скиба, А.Н.
Дата публикации: 2013
Издательство: Институт математики НАН Беларуси
Библиографическое описание: Guo, W. On the intersection of maximal supersoluble subgroups of a finite group / Wenbin Guo, A.N. Skiba // Институт математики НАН Беларуси. - 2013. - Т. 21, № 1. - С. 48-51.
Краткий осмотр (реферат): The hyper-generalized-center genz∗(G) of a finite group G coincides with the largest term of the chain of subgroups 1 = Q₀(G) ≤ Q1(G) ≤ . . . ≤ Qᵼ(G) ≤ . . . where Qᵢ(G)/Qᵢ₋₁(G) is the subgroup of G/Qᵢ₋₁(G) generated by the set of all cyclic S -quasinormal subgroups of G/Qᵢ₋₁(G). It is proved that for any finite group A, there is a finite group G such that A ≤ G and genz∗(G) ≠ Int𝔘(G).
URI (Унифицированный идентификатор ресурса): http://elib.gsu.by/jspui/handle/123456789/17100
Располагается в коллекциях:Статьи

Файлы этого ресурса:
Файл Описание РазмерФормат 
Guo_Skiba_On_the_intersection.pdf161.71 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.