Title: | On the intersection of maximal supersoluble subgroups of a finite group |
Authors: | Guo, W. Skiba, A.N. Скиба, А.Н. |
Issue Date: | 2013 |
Publisher: | Институт математики НАН Беларуси |
Citation: | Guo, W. On the intersection of maximal supersoluble subgroups of a finite group / Wenbin Guo, A.N. Skiba // Институт математики НАН Беларуси. - 2013. - Т. 21, № 1. - С. 48-51. |
Abstract: | The hyper-generalized-center genz∗(G) of a finite group G coincides with the largest term of the chain of subgroups 1 = Q₀(G) ≤ Q1(G) ≤ . . . ≤ Qᵼ(G) ≤ . . . where Qᵢ(G)/Qᵢ₋₁(G) is the subgroup of G/Qᵢ₋₁(G) generated by the set of all cyclic S -quasinormal subgroups of G/Qᵢ₋₁(G). It is proved that for any finite group A, there is a finite group G such that A ≤ G and genz∗(G) ≠ Int𝔘(G). |
URI: | http://elib.gsu.by/jspui/handle/123456789/17100 |
Appears in Collections: | Статьи |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Guo_Skiba_On_the_intersection.pdf | 161.71 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.