Full metadata record
DC FieldValueLanguage
dc.contributor.authorShemetkov, L.A.-
dc.contributor.authorSkiba, A.N.-
dc.contributor.authorШеметков, Л.А.-
dc.contributor.authorСкиба, А.Н.-
dc.date.accessioned2021-02-26T14:13:47Z-
dc.date.available2021-02-26T14:13:47Z-
dc.date.issued2009-
dc.identifier.citationShemetkov, L.A. On the XΦ-hypercentre of finite groups / L.A. Shemetkov, A.N. Skiba // Journal of Algebra. - 2009. - № 322. - Р. 2106-2117.ru
dc.identifier.urihttp://elib.gsu.by/jspui/handle/123456789/17267-
dc.description.abstractLet G be a finite group, X a class of groups. A chief factor H/K of G is called X-central provided [H/K](G/CG(H/K)) ∈ X. Let ZXΦ(G) be the product of all normal subgroups H of G such that all non-Frattini G-chief factors of H are X-central. Then we say that ZXΦ(G) is the XΦ-hypercentre of G. Our main result here is the following (Theorem 1.4): Let X E be normal subgroups of a group G. Suppose that every non-cyclic Sylow subgroup P of X has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| and every cyclic subgroup of P with order 4 (if |D| = 2 and P is a nonabelian 2-group) is weakly S-permutable in G. If X is either E or F ∗(E), then E ZUΦ(G). Here U is the class of all supersoluble finite groups.ru
dc.language.isoАнглийскийru
dc.subjectweakly S-permutable subgroupru
dc.subjectsylow subgroupru
dc.subjectXΦ-hypercentreru
dc.subjectgeneralized Fitting subgroupru
dc.titleOn the XΦ-hypercentre of finite groupsru
dc.typeArticleru
dc.rootJournal of Algebraru
dc.number№ 322ru
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
Shemetkov_On_the_XΦ-hypercentre.pdf222.57 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.