Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kniahina, V.N. | - |
dc.contributor.author | Monakhov, V.S. | - |
dc.contributor.author | Княгина, В.Н. | - |
dc.contributor.author | Монахов, В.С. | - |
dc.date.accessioned | 2021-03-03T11:37:17Z | - |
dc.date.available | 2021-03-03T11:37:17Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Kniahina, V.N. Finite groups with semi-subnormal Schmidt subgroups / V.N. Kniahina, V.S. Monakhov // Algebra and Discrete Mathematics. - 2020. - Vol. 29, № 1. - P. 66-73. | ru |
dc.identifier.uri | http://elib.gsu.by/jspui/handle/123456789/17526 | - |
dc.description.abstract | A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. A subgroup A of a group G is semi-normal in G if there exists a subgroup B of G such that G = AB and AB1 is a proper subgroup of G for every proper subgroup B1 of B. If A is either subnormal in G or is semi-normal in G, then A is called a semi-subnormal subgroup of G. In this paper, we establish that a group G with semi-subnormal Schmidt {2, 3}-subgroups is 3-soluble. Moreover, if all 5-closed Schmidt {2, 5}-subgroups are semi-subnormal in G, then G is soluble. We prove that a group with semi-subnormal Schmidt subgroups is metanilpotent. | ru |
dc.language.iso | Английский | ru |
dc.subject | finite soluble group | ru |
dc.subject | Schmidt subgroup | ru |
dc.subject | semi-normal subgroup | ru |
dc.subject | subnormal subgroup | ru |
dc.title | Finite groups with semi-subnormal Schmidt subgroups | ru |
dc.type | Article | ru |
dc.root | Algebra and Discrete Mathematics | ru |
dc.number | № 1 | ru |
dc.volume | 29 | ru |
dc.identifier.DOI | 10.12958/adm1376 | ru |
Appears in Collections: | Статьи |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Kniahina_Finite_groups_with.pdf | 288.82 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.