| Title: | Компактные операторы Ганкеля над компактными Абелевыми группами |
| Other Titles: | On compact Hankel operators over compact Abelian groups |
| Authors: | Миротин, А.Р. Mirotin, A.R. |
| Keywords: | compact Abelian group linearly ordered group Hankel operator compact operator finite rank operator Schatten–von Neumann class singular number invariant subspace |
| Issue Date: | 2020 |
| Citation: | Миротин, А.Р. Компактные операторы Ганкеля над компактными Абелевыми группами = On compact Hankel operators over compact Abelian groups / А.Р. Миротин // Functional Analysis. - 2020. - № 6. - С. 1-22. |
| Abstract: | We consider compact and connected Abelian group G with a linearly ordered dual. Based on the description of the structure of compact Hankel operators over G, generalizations of the classical Kronecker, Hartman, Peller and Adamyan - Arov - Krein theorems are obtained. A generalization of Burling’s invariant subspace theorem is also established. Applications are given to Hankel operators over discrete groups. |
| URI: | http://elib.gsu.by/jspui/handle/123456789/40918 |
| Appears in Collections: | Статьи |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| On_compact_Hankel_operators.pdf | 251.58 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.