Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Murashka, V.I. | - |
dc.date.accessioned | 2022-06-01T12:08:48Z | - |
dc.date.available | 2022-06-01T12:08:48Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Murashka, V.I. On the 𝔉-hypercenter and the intersection of 𝔉-maximal subgroups of a finite group / V.I. Murashka // J. Group Theory. - 2018. - Vol. 21. - P. 463-473. | ru |
dc.identifier.uri | http://elib.gsu.by/jspui/handle/123456789/41331 | - |
dc.description.abstract | Let Ӿ be a class of groups. A subgroup U of a group G is called Ӿ -maximal in G provided that (a) U ∊ Ӿ , and (b) if U ≤ V ≤ G and V ∊ Ӿ, then U = V. A chief factor H / K of G is called Ӿ-eccentric in G provided (H / K) ⋊ G / Cɢ (H / K) ∉ Ӿ. A group G is called a quasi-Ӿ-group if for every Ӿ-eccentric chief factor H / K and every x ∊ G, x induces an inner automorphism on H / K. We use Ӿ* to denote the class of all quasi Ӿ-groups. In this paper we describe all hereditary saturated formations 𝔉 containing all nilpotent groups such that the 𝔉* -hypercenter of G coincides with the intersection of all 𝔉* -maximal subgroups of G for every group G. | ru |
dc.language.iso | Английский | ru |
dc.title | On the 𝔉-hypercenter and the intersection of 𝔉-maximal subgroups of a finite group | ru |
dc.type | Article | ru |
dc.root | J. Group Theory | ru |
dc.volume | 21 | ru |
dc.identifier.DOI | 10.1515/jgth-2017-0043 | ru |
Appears in Collections: | Статьи |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10.1515_jgth-2017-0043.pdf | 214.35 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.