Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Demidenko, O.M. | - |
dc.contributor.author | Aksionova, N.A. | - |
dc.contributor.author | Демиденко, О.М. | - |
dc.contributor.author | Аксенова, Н.А. | - |
dc.date.accessioned | 2022-09-30T12:29:29Z | - |
dc.date.available | 2022-09-30T12:29:29Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Demidenko, O.M. Development of a Machine Vision System for Image Recognition of Design Estimates / O.M. Demidenko, N.A. Aksionova // Nonlinear Phenomena in Complex Systems. - 2022. - Vol. 25, No. 2. - P. 159-167. | ru |
dc.identifier.uri | http://elib.gsu.by/jspui/handle/123456789/44802 | - |
dc.description.abstract | This paper discusses implementation of a machine vision system for pattern recognition of design estimates. The main problem in the development of these systems is the choice of unique features that remain invariant to various kinds of transformations. Angular descriptors were chosen as a dominant feature. The paper presents a comparative analysis of the corner detection methods of the Moravec algorithm, the Harris algorithm, and the Shi–Tomasi algorithm. The authors have developed software in Python language that implements the operation of the Harris detector and the Shih-Tomasi detector. The recognition system is being tested for building 3D models in Blender. | ru |
dc.language.iso | Английский | ru |
dc.subject | computer vision | ru |
dc.subject | machine vision | ru |
dc.subject | pattern recognition | ru |
dc.subject | singular points | ru |
dc.subject | detector | ru |
dc.subject | descriptor | ru |
dc.subject | OpenCV | ru |
dc.subject | Python | ru |
dc.title | Development of a Machine Vision System for Image Recognition of Design Estimates | ru |
dc.type | Article | ru |
dc.root | Nonlinear Phenomena in Complex Systems | ru |
dc.number | № 2 | ru |
dc.volume | 25 | ru |
dc.identifier.DOI | https://doi.org/10.33581/1561-4085-2022-25-2-159-167 | ru |
Appears in Collections: | Статьи |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
v25no2p159.pdf | 2.04 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.