Full metadata record
DC FieldValueLanguage
dc.contributor.authorГальмак, А.М.-
dc.contributor.authorGal'mak, А.М.-
dc.date.accessioned2019-04-05T07:08:21Z-
dc.date.available2019-04-05T07:08:21Z-
dc.date.issued2019-
dc.identifier.citationГальмак, А.М. О не n-полуабелевости полиадических группоидов специального вида = Оn non-n-semiabelianism polyadic groupoids of special class / А.М. Гальмак // Проблемы физики, математики и техники. Сер.: Математика. - 2019. - № 1 (38). - С. 31-39.ru
dc.identifier.issn2077-8708-
dc.identifier.urihttp://hdl.handle.net/123456789/6492-
dc.description.abstractИзучается перестановочность элементов в полиадических группоидах с полиадической операцией Ƞ𝗌,σ,k, которая определяется на декартовой степени Ak n-арного группоида < A, Ƞ > с помощью подстановки σ ϵ Sk и n-арной операции Ƞ. Основным результатом статьи является теорема, в которой сформулированы достаточные условия не n-полуабелевости l-арного группоида < Ak, Ƞs,σ,k >, где l = s (n– 1) + 1, k ≥ 2. Приведены многочисленные следствия из этой теоремы. В частности установлено, что если подстановка σ удовлетворяет условиям σ n–1≠ σ, σ l = σ, n-арная группа < A, Ƞ > имеет не менее двух элементов, то полиадический группоид < Ak, Ƞs,σ,k > является не n-полуабелевой полиадической группой. The permutability of the elements in polyadic groupoids with polyadic operation Ƞ𝗌,σ,k, that is defined on Cartesian power of Ak n-ary groupoid < A, Ƞ > by substitution σ ϵ Sk and n-ary operation Ƞ are considered. The main result of the article is the theo-rem in which sufficient conditions of non-n-semiabelianism of l-ary (l= s(n– 1) + 1, k ≥ 2) groupoid < Ak, Ƞ𝗌,σ,k > are formulated. Numerous consequences of this theorem are given. In particular, it was found that if substitution σ satisfies the conditions σn–1 ≠ σ, σ l = σ, n-ary group < A, Ƞ> has no less than two elements, then polyadic groupoid < Ak,Ƞ𝗌,σ,k > is a non-n-semiabelian polyadic group.ru
dc.language.isoРусскийru
dc.publisherГомельский государственный университет имени Ф.Скориныru
dc.subjectполиадическая операцияru
dc.subjectn-арный группоидru
dc.subjectабелевостьru
dc.subjectполуабелевостьru
dc.subjectнейтральная последовательностьru
dc.subjectpolyadic operationru
dc.subjectn-ary groupoidru
dc.subjectabelianismru
dc.subjectsemiabelianismru
dc.subjectneutral sequenceru
dc.titleО не n-полуабелевости полиадических группоидов специального видаru
dc.title.alternativeОn non-n-semiabelianism polyadic groupoids of special classru
dc.typeArticleru
dc.identifier.udk512.548-
dc.rootПроблемы физики, математики и техникиru
dc.placeOfPublicationГомельru
dc.seriesМатематикаru
dc.number№ 1 (38)ru
Appears in Collections:Проблемы физики, математики, техники. Математика

Files in This Item:
File Description SizeFormat 
Гальмак АМ 2019-1.pdf303.95 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.