Title: О производной π-длине π-разрешимой группы
Authors: Грицук, Д.В.
Монахов, В.С.
Шпырко, О.А.
Issue Date: 2012
Publisher: Белорусский государственный университет
Citation: Грицук, Д.В. О производной π-длине π-разрешимой группы / Д.В. Грицук, В.С. Монахов, О.А. Шпырко // Вестник БГУ. Серия 1. - 2012. - № 3. - С. 90-95.
Abstract: A new notion of the derived π-length of a π-soluble group is proposed. The dependence of the derived π-length of a π-soluble group on the structure of Hall π-subgroups are found. In particular, it is proved that the derived π-length of a π-soluble group with abelian Sylow p-subgroup for any p ∈ π coincides with the derived length of a Hall π-subgroup. Also it is established that if 2∉ π then the derived π-length of a π-soluble group with a metabelian Hall π-subgroup is at most 3.
URI: https://elib.gsu.by/handle123456789/66443
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
Грицук_О_производной.pdf382.19 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.