Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Murashka, V.I. | - |
dc.contributor.author | Vasil’ev, A.F. | - |
dc.contributor.author | Мурашко, В.И. | - |
dc.contributor.author | Васильев, А.Ф. | - |
dc.date.accessioned | 2025-01-24T11:24:23Z | - |
dc.date.available | 2025-01-24T11:24:23Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Murashka, V.I. A generalization of Hall’s theorem on hypercenter / V.I. Murashka, A.F. Vasil’ev // arXiv.org.math.GR. - 2021. - arXiv:2103.04900v2. - P. [1-11]. | ru |
dc.identifier.uri | https://elib.gsu.by/handle123456789/73240 | - |
dc.description.abstract | Let σ be a partition of the set of all primes and F be a hereditary formation. We described all formations F for which the F-hypercenter and the intersection of weak K-Fsubnormalizers of all Sylow subgroups coincide in every group. In particular the formation of all σ-nilpotent groups has this property. With the help of our results we solve a particular case of L.A. Shemetkov’s problem about the intersection of F-maximal subgroups and the F-hypercenter. As corollaries we obtained P. Hall’s and R. Baer’s classical results about the hypercenter. We proved that the non-σ-nilpotent graph of a group is connected and its diameter is at most 3. | ru |
dc.language.iso | en | ru |
dc.subject | Finite group | ru |
dc.subject | σ-nilpotent group | ru |
dc.subject | hereditary formation | ru |
dc.subject | K-F-subnormal subgroup | ru |
dc.subject | F-hypercenter | ru |
dc.subject | non-F-graph of a group | ru |
dc.title | A generalization of Hall’s theorem on hypercenter | ru |
dc.type | Article | ru |
dc.root | arXiv.org.math.GR | ru |
dc.number | arXiv:2103.04900v2 | ru |
Appears in Collections: | Статьи |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Murashka_A _generalization.pdf | 190.07 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.