Full metadata record
DC FieldValueLanguage
dc.contributor.authorMurashka, V.I.-
dc.contributor.authorVasil’ev, A.F.-
dc.contributor.authorМурашко, В.И.-
dc.contributor.authorВасильев, А.Ф.-
dc.date.accessioned2025-01-24T11:24:23Z-
dc.date.available2025-01-24T11:24:23Z-
dc.date.issued2021-
dc.identifier.citationMurashka, V.I. A generalization of Hall’s theorem on hypercenter / V.I. Murashka, A.F. Vasil’ev // arXiv.org.math.GR. - 2021. - arXiv:2103.04900v2. - P. [1-11].ru
dc.identifier.urihttps://elib.gsu.by/handle123456789/73240-
dc.description.abstractLet σ be a partition of the set of all primes and F be a hereditary formation. We described all formations F for which the F-hypercenter and the intersection of weak K-Fsubnormalizers of all Sylow subgroups coincide in every group. In particular the formation of all σ-nilpotent groups has this property. With the help of our results we solve a particular case of L.A. Shemetkov’s problem about the intersection of F-maximal subgroups and the F-hypercenter. As corollaries we obtained P. Hall’s and R. Baer’s classical results about the hypercenter. We proved that the non-σ-nilpotent graph of a group is connected and its diameter is at most 3.ru
dc.language.isoenru
dc.subjectFinite groupru
dc.subjectσ-nilpotent groupru
dc.subjecthereditary formationru
dc.subjectK-F-subnormal subgroupru
dc.subjectF-hypercenterru
dc.subjectnon-F-graph of a groupru
dc.titleA generalization of Hall’s theorem on hypercenterru
dc.typeArticleru
dc.rootarXiv.org.math.GRru
dc.numberarXiv:2103.04900v2ru
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
Murashka_A _generalization.pdf190.07 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.