Title: On K-Pt-subnormal subgroups of finite groups and related formations
Authors: Vasil’ev, A.F.
Vasil’eva, T.I.
Keywords: finite group
K-Pt-subnormal subgroup
K-P-subnormal subgroup
Sylow subgroup
supersoluble group
formation
Issue Date: 2024
Citation: Vasil’ev, A.F. On K-Pt-subnormal subgroups of finite groups and related formations / A.F. Vasil’ev, T.I. Vasil’eva // arXiv.org.math.GR. - 2013. - arXiv:2405.11652v1. - P. [1-11].
Abstract: Let t be a fixed natural number. A subgroup H of a group G will be called K-Ptsubnormal in G if there exists a chain of subgroups H = H0 ≤ H1 ≤ · · · ≤ Hm−1 ≤ Hm = G such that either Hi−1 is normal in Hi or |Hi : Hi−1| is a some prime p and p − 1 is not divisible by the (t + 1)th powers of primes for every i = 1, . . . , n. In this work, properties of K-Pt-subnormal subgroups and classes of groups with Sylow K-Pt-subnormal subgroups are obtained.
URI: https://elib.gsu.by/handle123456789/73242
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
Vasil'ev_On_K-Pt-subnormal.pdf163.46 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.