Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMurashka, V.I.-
dc.contributor.authorVasil’ev, A.F.-
dc.contributor.authorМурашко, В.И.-
dc.contributor.authorВасильев, А.Ф.-
dc.date.accessioned2025-01-29T07:23:15Z-
dc.date.available2025-01-29T07:23:15Z-
dc.date.issued2023-
dc.identifier.citationMurashka, V.I. On the Generalized Fitting Height and Nonsoluble Length of the Mutually Permutable Products of Finite Groups / V.I. Murashka, A.F. Vasil'ev // arXiv.org.math.GR. - 2023. - arXiv:2301.02199v1. - P. [1-12].ru
dc.identifier.urihttps://elib.gsu.by/handle123456789/73429-
dc.description.abstractThe generalized Fitting height h∗(G) of a finite group G is the least number h such that F∗ h(G) = G, where F∗ (0)(G) = 1, and F∗ (i+1)(G) is the inverse image of the generalized Fitting subgroup F∗(G/F∗ (i)(G)). Let p be a prime, 1 = G0 ≤ G1 ≤ · · · ≤ G2h+1 = G be the shortest normal series in which for i odd the factor Gi+1/Gi is p-soluble (possibly trivial), and for i even the factor Gi+1/Gi is a (non-empty) direct product of nonabelian simple groups. Then h = λp(G) is called the non-p-soluble length of a group G. We proved that if a finite group G is a mutually permutable product of of subgroups A and B then max{h∗(A), h∗(B)} ≤ h∗(G) ≤ max{h∗(A), h∗(B)} + 1 and max{λp(A), λp(B)} = λp(G). Also we introduced and studied the non-Frattini length.ru
dc.language.isoenru
dc.subjectFinite groupru
dc.subjectgeneralized Fitting subgroupru
dc.subjectmutually permutable product of groupsru
dc.subjectgeneralized Fitting heightru
dc.subjectnon-p-soluble lengthru
dc.subjectPlotkin radicalru
dc.titleOn the Generalized Fitting Height and Nonsoluble Length of the Mutually Permutable Products of Finite Groupsru
dc.typeArticleru
dc.rootarXiv.org.math.GRru
dc.numberarXiv:2301.02199v1ru
Располагается в коллекциях:Статьи

Файлы этого ресурса:
Файл Описание РазмерФормат 
Murashka_On_the_Generalized.pdf220.91 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.