Full metadata record
DC FieldValueLanguage
dc.contributor.authorMurashka, V.I.-
dc.contributor.authorМурашко, В.И.-
dc.date.accessioned2025-01-29T07:31:18Z-
dc.date.available2025-01-29T07:31:18Z-
dc.date.issued2024-
dc.identifier.citationMurashka, V.I. A test for a local formation of finite groups to be a formation of soluble groups with the Shemetkov property / V.I. Murashka // arXiv.org.math.GR. - 2024. - arXiv:2405.20257v1. - P. [1-8].ru
dc.identifier.urihttps://elib.gsu.by/handle123456789/73432-
dc.description.abstractL.A. Shemetkov posed a Problem 9.74 in Kourovka Notebook to find all local formations F of finite groups such that every finite minimal non-F-group is either a Schmidt group or a group of prime order. All known solutions to this problem are obtained under the assumption that every minimal non-F-group is soluble. Using the above mentioned solutions we present a polynomial in n time check for a local formation F with bounded π(F) to be a formation of soluble groups with the Shemtkov property where n = max π(F).ru
dc.language.isoenru
dc.subjectFinite groupru
dc.subjectSchmidt groupru
dc.subjectsoluble groupru
dc.subjectlocal formationru
dc.subjectformation with the Shemetkov propertyru
dc.subjectN-critical graph of a groupru
dc.titleA test for a local formation of finite groups to be a formation of soluble groups with the Shemetkov propertyru
dc.typeArticleru
dc.rootarXiv.org.math.GRru
dc.numberarXiv:2405.20257v1ru
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
Murashka_A_test_for.pdf137.64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.