Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Murashka, V.I. | - |
dc.contributor.author | Мурашко, В.И. | - |
dc.date.accessioned | 2025-01-29T07:31:18Z | - |
dc.date.available | 2025-01-29T07:31:18Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Murashka, V.I. A test for a local formation of finite groups to be a formation of soluble groups with the Shemetkov property / V.I. Murashka // arXiv.org.math.GR. - 2024. - arXiv:2405.20257v1. - P. [1-8]. | ru |
dc.identifier.uri | https://elib.gsu.by/handle123456789/73432 | - |
dc.description.abstract | L.A. Shemetkov posed a Problem 9.74 in Kourovka Notebook to find all local formations F of finite groups such that every finite minimal non-F-group is either a Schmidt group or a group of prime order. All known solutions to this problem are obtained under the assumption that every minimal non-F-group is soluble. Using the above mentioned solutions we present a polynomial in n time check for a local formation F with bounded π(F) to be a formation of soluble groups with the Shemtkov property where n = max π(F). | ru |
dc.language.iso | en | ru |
dc.subject | Finite group | ru |
dc.subject | Schmidt group | ru |
dc.subject | soluble group | ru |
dc.subject | local formation | ru |
dc.subject | formation with the Shemetkov property | ru |
dc.subject | N-critical graph of a group | ru |
dc.title | A test for a local formation of finite groups to be a formation of soluble groups with the Shemetkov property | ru |
dc.type | Article | ru |
dc.root | arXiv.org.math.GR | ru |
dc.number | arXiv:2405.20257v1 | ru |
Appears in Collections: | Статьи |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Murashka_A_test_for.pdf | 137.64 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.