Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorNikitjuk, Y.V.-
dc.contributor.authorProkhorenko, V.A.-
dc.contributor.authorSemchenko, A.V.-
dc.contributor.authorKovalenko, D.L.-
dc.contributor.authorНикитюк, Ю.В.-
dc.contributor.authorПрохоренко, В.А.-
dc.contributor.authorСемченко, А.В.-
dc.contributor.authorКоваленко, Д.Л.-
dc.date.accessioned2025-03-04T09:29:15Z-
dc.date.available2025-03-04T09:29:15Z-
dc.date.issued2023-
dc.identifier.citationMulti-Criteria Optimization of Quartz Glass Laser Cleaving Parameters via Neural Network Simulation and Genetic Algorithm / Y. Nikityuk, V. Prokhorenko, A. Semchenko, D. Kovalenko // 2023 7th International Conference on Information, Control, and Communication Technologies (ICCT). - Astra-khan, 2023. - P. 1-3.ru
dc.identifier.urihttps://elib.gsu.by/handle123456789/74366-
dc.description.abstractThe current paper uses neural network modeling and a genetic algorithm to determine the values of technological parameters that ensure effective laser cleaving of quartz glass when exposed to a laser beam with a wavelength equal to 10.6 µm and a refrigerant. Multi-criteria optimization of laser cleaving of quartz plates was performed according to the criteria of maximum tensile stresses and maximum processing speed.ru
dc.language.isoenru
dc.subjectneural networkru
dc.subjectgenetic algorithmru
dc.subjectlaser cleavingru
dc.subjectoptimizationru
dc.titleMulti-Criteria Optimization of Quartz Glass Laser Cleaving Parameters via Neural Network Simulation and Genetic Algorithmru
dc.typeArticleru
dc.root2023 7th International Conference on Information, Control, and Communication Technologies (ICCT)ru
dc.placeOfPublicationAstra-khanru
dc.identifier.DOIdoi: 10.1109/ICCT58878.2023.10347113ru
Располагается в коллекциях:Статьи

Файлы этого ресурса:
Файл Описание РазмерФормат 
Nikityuk_Multi-Criteria.pdf366.7 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.