Название: O проявлении космологической кривизны пространства в модели нейтрального фермиона с тремя массовыми параметрами
Другие названия: On the manifestation of the cosmological curvature of space in a model of a neutral fermion with three mass parameters
Авторы: Войнова, Я.А.
Овсиюк, Е.М.
Voynova, Ya.A.
Ovsiyuk, E.M.
Ключевые слова: фермион с тремя массовыми параметрами
майорановская частица
скалярная кривизна пространства-времени
уравнение Дирака
fermion with three mass parameters
Majorana particle
of space-time scalar curvature
Dirac equation
Дата публикации: 2020
Издательство: Гомельский государственный университет имени Ф.Скорины
Библиографическое описание: Войнова, Я.А. O проявлении космологической кривизны пространства в модели нейтрального фермиона с тремя массовыми параметрами = On the manifestation of the cosmological curvature of space in a model of a neutral fermion with three mass parameters / Я.А. Войнова, Е.М. Овсиюк // Проблемы физики, математики и техники. Сер.: Физика. - 2020. - № 1 (42). - С. 18-28.
Краткий осмотр (реферат): Исследуется обобщенная модель фермиона со спином ½, который характеризуется тремя физическими массовыми параметрами Mi. Дополнительное взаимодействие определяется тензором внешнего электромагнитного поля и скалярной кривизной пространства-времени, оно связывает три биспинора в единую систему уравнений. Модель остается применимой и для нейтральных майорановских фермионов, при этом объединение трех биспиноров в единую систему обеспечивается ненулевой скалярной кривизной. Исследуется модельная ситуация, когда можно считать, что локально допустимо использование декартовых координат, а внешний геометрический фон можно эффективно учесть постоянным скаляром Риччи R. Для простоты ограничиваемся одномерным случаем (t, x). Используя диагонализацию матрицы смешивания в сложной системе уравнений, приводим задачу к трем раздельным уравнениям дираковского типа с новыми эффективными массами Mi, значения которых определяются численно в зависимости от внутренних параметров модели и от величины кривизны пространства-времени. Приведен также численный анализ необходимых диагонализирующих преобразований S и S–1. Решения трех раздельных уравнений майорановского типа строятся в базисе импульс-спиральность. Используя выражение для матриц преобразования S и S–1, эти решения раскладываются в линейные комбинации по решениям с физическими массами и наоборот. In this work a generalized fermion model with spin ½, which is characterized by three physical mass parameters Mi are studied. The additional interaction is determined by the tensor of the external electromagnetic field and the scalar space-time curvature. It joints three bispinors into one physical system. The model also remains valid for neutral Majorana fermions. The coupling of three bispinors into a single system is ensured by the nonzero scalar curvature of the space-time. We study a model situation where it can be assumed that locally the use of Cartesian coordinates is permissible, and the external geometric background can be effectively taken into account by a constant Ricci curvature R. For simplicity, we restrict ourselves to the one-dimensional case (t, x). Using the diagonalization of the mixing matrix in a complex system of equations, we reduce the problem to three separate Dirac-type equations with new effective masses M i, the values of which are determined numerically depending on the internal parameter of the model and the space-time curvature. A numerical analysis of the necessary diagonalizing transformations S and S–1 is given. The solutions of three separate equations of the Majorana type are constructed in the momentum–helicity basis. Using the expression for the transformation matrices S and S–1, these solutions are decomposed into linear combinations by solutions with physical masses and vice versa.
URI (Унифицированный идентификатор ресурса): http://elib.gsu.by/handle/123456789/8916
ISSN: 2077-8708
Располагается в коллекциях:Проблемы физики, математики, техники. Физика

Файлы этого ресурса:
Файл Описание РазмерФормат 
Войнова_О_проявлении_Проблемы_2020_1.pdf428.94 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.