Название: On the supersolubility of a group with semisubnormal factors
Авторы: Monakhov, V.S.
Trofimuk, A.A.
Монахов, В.С.
Трофимук, А.А.
Дата публикации: 2020
Библиографическое описание: Monakhov, V.S. On the supersolubility of a group with semisubnormal factors / V.S. Monakhov, A.A. Trofimuk // Journal of Group Theory. - 2020. - № 23. - Р. 893-911.
Краткий осмотр (реферат): A subgroup A of a group G is called seminormal in G if there exists a subgroup B such that G = AB and AX is a subgroup of G for every subgroup X of B. We introduce the new concept that unites subnormality and seminormality. A subgroup A of a group G is called semisubnormal in G if A is subnormal in G or seminormal in G. A group G = AB with semisubnormal supersoluble subgroups A and B is studied. The equality Gᵁ = (G΄)ᶰ is established; moreover, if the indices of subgroups A and B in G are relatively prime, then Gᵁ = (G΄)ᶰ². Here N, U and N² are the formations of all nilpotent, supersoluble and metanilpotent groups, respectively; H ͯ is the X-residual of H. Also we prove the supersolubility of G = AB when all Sylow subgroups of A and of B are semisubnormal in G.
URI (Унифицированный идентификатор ресурса): http://elib.gsu.by/jspui/handle/123456789/16578
Располагается в коллекциях:Статьи

Файлы этого ресурса:
Файл Описание РазмерФормат 
Monakhov_On_the_supersolubility.pdf251.42 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.