Title: Finite groups with all 2-maximal subgroups K-ℙ-subnormal
Authors: Kovaleva, V.A.
Keywords: 2-maximal subgroup
strictly 2-maximal subgroup
soluble group
supersoluble group
minimal nonsupersoluble group
K-ℙ-subnormal subgroup
Issue Date: 2013
Citation: Kovaleva, V.A. Finite groups with all 2-maximal subgroups K-ℙ-subnormal / V.A. Kovaleva // Mathematical Sciences Research Journal. - 2013. - Vol.17, № 6. - P. 150-155.
Abstract: A subgroup H of a group G is said to be K-ℙ-subnormal in G (A.N. Skiba) if there exists a chain of subgroups H = H₀ ≤ H₁ ≤ ... ≤ Hn = G such that either Hi-₁ is normal in Hi or | Hi : Hi-₁ | is a prime, for i = 1, ..., n. In this paper we describe finite groups in which every 2-maximal subgroup is K-ℙ-subnormal.
URI: http://elib.gsu.by/handle/123456789/7614
Appears in Collections:Статьи

Files in This Item:
File Description SizeFormat 
1_Viktoria_Finite20Groups_150-155-страницы-2-7.pdf566.39 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.